
关联规则推荐算法的原理及实现
关联规则用来发现数据间潜在的关联,最典型的应用是电商网站的购物车分析。本文将通过一个简单的例子来说明关联规则中各个术语的含义以及具体的计算方法。
这是一些用户的购物数据,uid是用户的ID,后面是每个用户具体购买的商品名称,我们使用字母进行标识。下面我们将使用关联规则对这些数据进行分析,挖掘不同商品间的联系。
首先将前面的一维的购物车流水数据转换为二维的列表。然后在这个基础上计算不同商品及商品组成出现的频率。
在关联规则中,有三个重要的术语,分别为支持度(Support),可信度(Confidence)和作用度(Lift)。第一个属于是支持度,支持度是一件商品在所有购物车中出现的频率。如果我们希望分析的是两件商品的关联,那么支持度就是这两件商品同时出现的频率。支持度的作用是用来衡量关联规则重要性的指标,简单来说就是我们所要挖掘的关系有多大的普遍性,普遍性越大这条关联规则越重要。第二个术语是可信度,可信度是指两件商品中当第一件出现时,第二件商品同时出现的频率。可信度用来衡量关联规则的准确性。第三个术语是作用度,作用度用来衡量关联规则对于商品出现频率的影响。只有作用度大于1的关联规则才有实际的应用意义。下面我们分别介绍这三个术语的计算方法。
支持度(Support)
支持度是两件商品在所有购物车中同时出现的概率,可以记录为P(A U B)。支持度的计算公式为A,B两件物品同时出现的次数与购物车总数的比率。对于前面例子中,如果我们要计算商品A和B在5条购物车记录中的支持度,具体的计算公式为1/5。商品A和B在5条购物车记录中只在uid1中同时出现过。
单件商品的支持度的计算方法与两件商品一样,如果我们要计算商品A的支持度,具体的计算公式为3/5。商品A在5条购物车记录中共出现了3次。单件商品的支持度描述了在没有其他商品影响的情况下,商品在购物车中出现的次数。
可信度(Confidence)
可信度是一个条件概率,两件商品其中一件出现在购物车中时,另一件也会出现的概率。可以记录为P(B|A)。对于前面的例子中,如果要计算A和B两件物品的可信度,具体的计算公式为1/3。商品A出现的3次,商品B同时出现的次数为1次。
作用度(Lift)
作用度通过衡量使用规则后的提升效果来判断规则是否可用,简单来说就是使用规则后商品在购物车中出现的次数是否高于商品单独出现在购物车中的频率。如果大于1说明规则有效,小于1则无效。对于前面的例子中,如果要计算规则A-B是否有效,计算公式为(1/5)/(3/5*3/5)=(0.2)/(0.6*0.6)=0.2/0.36=0.55。作用度小于1说明A-B规则对于商品B的提升没有效果。
按照前面的计算公式我们分别对下面的四个规则进行了计算,在获得支持度,可信度后计算出了四个规则的作用度。其中A-D规则作用度大于1,说明对购物车中已经包含商品A的用户推荐商品D,购买概率是单独推荐D的1.11倍。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09