机器学习基础—梯度下降法(Gradient Descent)
梯度下降法。一开始只是对其做了下简单的了解。随着内容的深入,发现梯度下降法在很多算法中都用的到,除了之前看到的用来处理线性模型,还有BP神经网络等。于是就有了这篇文章。
本文主要讲了梯度下降法的两种迭代思路,随机梯度下降(Stochastic gradient descent)和批量梯度下降(Batch gradient descent)。以及他们在python中的实现。
梯度下降法
梯度下降是一个最优化算法,通俗的来讲也就是沿着梯度下降的方向来求出一个函数的极小值。那么我们在高等数学中学过,对于一些我们了解的函数方程,我们可以对其求一阶导和二阶导,比如说二次函数。可是我们在处理问题的时候遇到的并不都是我们熟悉的函数,并且既然是机器学习就应该让机器自己去学习如何对其进行求解,显然我们需要换一个思路。因此我们采用梯度下降,不断迭代,沿着梯度下降的方向来移动,求出极小值。
此处我们还是用coursea的机器学习课中的案例,假设我们从中介那里拿到了一个地区的房屋售价表,那么在已知房子面积的情况下,如何得知房子的销售价格。显然,这是一个线性模型,房子面积是自变量x,销售价格是因变量y。我们可以用给出的数据画一张图。然后,给出房子的面积,就可以从图中得知房子的售价了。
现在我们的问题就是,针对给出的数据,如何得到一条最拟合的直线。
对于线性模型,如下。
h(x)是需要拟合的函数。
J(θ)称为均方误差或cost function。用来衡量训练集众的样本对线性模式的拟合程度。
m为训练集众样本的个数。
θ是我们最终需要通过梯度下降法来求得的参数。
\[h(\theta)=\sum_{j=0}^n \theta_jx_j \\ J(\theta)=\frac1{2m}\sum_{i=0}^m(y^i-h_\theta(x^i))^2\]
接下来的梯度下降法就有两种不同的迭代思路。
批量梯度下降(Batch gradient descent)
现在我们就要求出J(θ)取到极小值时的\(θ^T\)向量。之前已经说过了,沿着函数梯度的方向下降就能最快的找到极小值。
计算J(θ)关于\(\theta^T\)的偏导数,也就得到了向量中每一个\(\theta\)的梯度。
\[ \begin{align} \frac{\partial J(\theta)}{\partial\theta_j} & = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(y^i-h_\theta(x^i)) \\ & = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(\sum_{j=0}^n\theta_jx_j^i-y^i) \\ & = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x^i_j \end{align} \]
沿着梯度的方向更新参数θ的值
\[ \theta_j := \theta_j + \alpha\frac{\partial J(\theta)}{\partial\theta_j} :=\theta_j - \alpha\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x^i_j \]
迭代直到收敛。
可以看到,批量梯度下降是用了训练集中的所有样本。因此在数据量很大的时候,每次迭代都要遍历训练集一遍,开销会很大,所以在数据量大的时候,可以采用随机梯度下降法。
随机梯度下降(Stochastic gradient descent)
和批量梯度有所不同的地方在于,每次迭代只选取一个样本的数据,一旦到达最大的迭代次数或是满足预期的精度,就停止。
可以得出随机梯度下降法的θ更新表达式。
\[ \theta_j:=\theta_j - \alpha\frac1m(y^i-h_\theta(x^i))x^i_j \]
迭代直到收敛。
两种迭代思路的python实现
下面是python的代码实现,现在仅仅是用纯python的语法(python2.7)来实现的。随着学习的深入,届时还会有基于numpy等一些库的实现,下次补充。
#encoding:utf-8
#随机梯度
def stochastic_gradient_descent(x,y,theta,alpha,m,max_iter):
"""随机梯度下降法,每一次梯度下降只使用一个样本。
:param x: 训练集种的自变量
:param y: 训练集种的因变量
:param theta: 待求的权值
:param alpha: 学习速率
:param m: 样本总数
:param max_iter: 最大迭代次数
"""
deviation = 1
iter = 0
flag = 0
while True:
for i in range(m): #循环取训练集中的一个
deviation = 0
h = theta[0] * x[i][0] + theta[1] * x[i][1]
theta[0] = theta[0] + alpha * (y[i] - h)*x[i][0]
theta[1] = theta[1] + alpha * (y[i] - h)*x[i][1]
iter = iter + 1
#计算误差
for i in range(m):
deviation = deviation + (y[i] - (theta[0] * x[i][0] + theta[1] * x[i][1])) ** 2
if deviation <EPS or iter >max_iter:
flag = 1
break
if flag == 1 :
break
return theta, iter
#批量梯度
def batch_gradient_descent(x,y,theta,alpha,m,max_iter):
"""批量梯度下降法,每一次梯度下降使用训练集中的所有样本来计算误差。
:param x: 训练集种的自变量
:param y: 训练集种的因变量
:param theta: 待求的权值
:param alpha: 学习速率
:param m: 样本总数
:param max_iter: 最大迭代次数
"""
deviation = 1
iter = 0
while deviation > EPS and iter < max_iter:
deviation = 0
sigma1 = 0
sigma2 = 0
for i in range(m): #对训练集中的所有数据求和迭代
h = theta[0] * x[i][0] + theta[1] * x[i][1]
sigma1 = sigma1 + (y[i] - h)*x[i][0]
sigma2 = sigma2 + (y[i] - h)*x[i][1]
theta[0] = theta[0] + alpha * sigma1 /m
theta[1] = theta[1] + alpha * sigma2 /m
#计算误差
for i in range(m):
deviation = deviation + (y[i] - (theta[0] * x[i][0] + theta[1] * x[i][1])) ** 2
iter = iter + 1
return theta, iter
#运行 为两种算法设置不同的参数
# data and init
matrix_x = [[2.1,1.5],[2.5,2.3],[3.3,3.9],[3.9,5.1],[2.7,2.7]]
matrix_y = [2.5,3.9,6.7,8.8,4.6]
MAX_ITER = 5000
EPS = 0.0001
#随机梯度
theta = [2,-1]
ALPHA = 0.05
resultTheta,iters = stochastic_gradient_descent(matrix_x, matrix_y, theta, ALPHA, 5, MAX_ITER)
print 'theta=',resultTheta
print 'iters=',iters
#批量梯度
theta = [2,-1]
ALPHA = 0.05
resultTheta,iters = batch_gradient_descent(matrix_x, matrix_y, theta, ALPHA, 5, MAX_ITER)
print 'theta=',resultTheta
print 'iters=',iters
运行结果
ALPHA = 0.05ALPHA = 0.05
theta= [-0.08445285887795494, 1.7887820818368738]
iters= 1025
theta= [-0.08388979324755381, 1.7885951009289043]
iters= 772
[Finished in 0.5s]
ALPHA = 0.01
theta= [-0.08387216503392847, 1.7885649678753883]
iters= 3566
theta= [-0.08385924864202322, 1.788568071697816]
iters= 3869
[Finished in 0.1s]
ALPHA = 0.1
theta= [588363545.9596066, -664661366.4562845]
iters= 5001
theta= [-0.09199523483489512, 1.7944581778450577]
iters= 516
[Finished in 0.2s]
总结
梯度下降法是一种最优化问题求解的算法。有批量梯度和随机梯度两种不同的迭代思路。他们有以下的差异:
批量梯度收敛速度慢,随机梯度收敛速度快。
批量梯度是在θ更新前对所有样例汇总误差,而随机梯度下降的权值是通过考查某个样本来更新的
批量梯度的开销大,随机梯度的开销小。数据分析师培训
使用梯度下降法时需要寻找出一个最好的学习效率。这样可以使得使用最少的迭代次数达到我们需要的精度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13