京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习基础—梯度下降法(Gradient Descent)
梯度下降法。一开始只是对其做了下简单的了解。随着内容的深入,发现梯度下降法在很多算法中都用的到,除了之前看到的用来处理线性模型,还有BP神经网络等。于是就有了这篇文章。
本文主要讲了梯度下降法的两种迭代思路,随机梯度下降(Stochastic gradient descent)和批量梯度下降(Batch gradient descent)。以及他们在python中的实现。
梯度下降法
梯度下降是一个最优化算法,通俗的来讲也就是沿着梯度下降的方向来求出一个函数的极小值。那么我们在高等数学中学过,对于一些我们了解的函数方程,我们可以对其求一阶导和二阶导,比如说二次函数。可是我们在处理问题的时候遇到的并不都是我们熟悉的函数,并且既然是机器学习就应该让机器自己去学习如何对其进行求解,显然我们需要换一个思路。因此我们采用梯度下降,不断迭代,沿着梯度下降的方向来移动,求出极小值。
此处我们还是用coursea的机器学习课中的案例,假设我们从中介那里拿到了一个地区的房屋售价表,那么在已知房子面积的情况下,如何得知房子的销售价格。显然,这是一个线性模型,房子面积是自变量x,销售价格是因变量y。我们可以用给出的数据画一张图。然后,给出房子的面积,就可以从图中得知房子的售价了。
现在我们的问题就是,针对给出的数据,如何得到一条最拟合的直线。
对于线性模型,如下。
h(x)是需要拟合的函数。
J(θ)称为均方误差或cost function。用来衡量训练集众的样本对线性模式的拟合程度。
m为训练集众样本的个数。
θ是我们最终需要通过梯度下降法来求得的参数。
\[h(\theta)=\sum_{j=0}^n \theta_jx_j \\ J(\theta)=\frac1{2m}\sum_{i=0}^m(y^i-h_\theta(x^i))^2\]
接下来的梯度下降法就有两种不同的迭代思路。
批量梯度下降(Batch gradient descent)
现在我们就要求出J(θ)取到极小值时的\(θ^T\)向量。之前已经说过了,沿着函数梯度的方向下降就能最快的找到极小值。
计算J(θ)关于\(\theta^T\)的偏导数,也就得到了向量中每一个\(\theta\)的梯度。
\[ \begin{align} \frac{\partial J(\theta)}{\partial\theta_j} & = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(y^i-h_\theta(x^i)) \\ & = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(\sum_{j=0}^n\theta_jx_j^i-y^i) \\ & = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x^i_j \end{align} \]
沿着梯度的方向更新参数θ的值
\[ \theta_j := \theta_j + \alpha\frac{\partial J(\theta)}{\partial\theta_j} :=\theta_j - \alpha\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x^i_j \]
迭代直到收敛。
可以看到,批量梯度下降是用了训练集中的所有样本。因此在数据量很大的时候,每次迭代都要遍历训练集一遍,开销会很大,所以在数据量大的时候,可以采用随机梯度下降法。
随机梯度下降(Stochastic gradient descent)
和批量梯度有所不同的地方在于,每次迭代只选取一个样本的数据,一旦到达最大的迭代次数或是满足预期的精度,就停止。
可以得出随机梯度下降法的θ更新表达式。
\[ \theta_j:=\theta_j - \alpha\frac1m(y^i-h_\theta(x^i))x^i_j \]
迭代直到收敛。
两种迭代思路的python实现
下面是python的代码实现,现在仅仅是用纯python的语法(python2.7)来实现的。随着学习的深入,届时还会有基于numpy等一些库的实现,下次补充。
#encoding:utf-8
#随机梯度
def stochastic_gradient_descent(x,y,theta,alpha,m,max_iter):
"""随机梯度下降法,每一次梯度下降只使用一个样本。
:param x: 训练集种的自变量
:param y: 训练集种的因变量
:param theta: 待求的权值
:param alpha: 学习速率
:param m: 样本总数
:param max_iter: 最大迭代次数
"""
deviation = 1
iter = 0
flag = 0
while True:
for i in range(m): #循环取训练集中的一个
deviation = 0
h = theta[0] * x[i][0] + theta[1] * x[i][1]
theta[0] = theta[0] + alpha * (y[i] - h)*x[i][0]
theta[1] = theta[1] + alpha * (y[i] - h)*x[i][1]
iter = iter + 1
#计算误差
for i in range(m):
deviation = deviation + (y[i] - (theta[0] * x[i][0] + theta[1] * x[i][1])) ** 2
if deviation <EPS or iter >max_iter:
flag = 1
break
if flag == 1 :
break
return theta, iter
#批量梯度
def batch_gradient_descent(x,y,theta,alpha,m,max_iter):
"""批量梯度下降法,每一次梯度下降使用训练集中的所有样本来计算误差。
:param x: 训练集种的自变量
:param y: 训练集种的因变量
:param theta: 待求的权值
:param alpha: 学习速率
:param m: 样本总数
:param max_iter: 最大迭代次数
"""
deviation = 1
iter = 0
while deviation > EPS and iter < max_iter:
deviation = 0
sigma1 = 0
sigma2 = 0
for i in range(m): #对训练集中的所有数据求和迭代
h = theta[0] * x[i][0] + theta[1] * x[i][1]
sigma1 = sigma1 + (y[i] - h)*x[i][0]
sigma2 = sigma2 + (y[i] - h)*x[i][1]
theta[0] = theta[0] + alpha * sigma1 /m
theta[1] = theta[1] + alpha * sigma2 /m
#计算误差
for i in range(m):
deviation = deviation + (y[i] - (theta[0] * x[i][0] + theta[1] * x[i][1])) ** 2
iter = iter + 1
return theta, iter
#运行 为两种算法设置不同的参数
# data and init
matrix_x = [[2.1,1.5],[2.5,2.3],[3.3,3.9],[3.9,5.1],[2.7,2.7]]
matrix_y = [2.5,3.9,6.7,8.8,4.6]
MAX_ITER = 5000
EPS = 0.0001
#随机梯度
theta = [2,-1]
ALPHA = 0.05
resultTheta,iters = stochastic_gradient_descent(matrix_x, matrix_y, theta, ALPHA, 5, MAX_ITER)
print 'theta=',resultTheta
print 'iters=',iters
#批量梯度
theta = [2,-1]
ALPHA = 0.05
resultTheta,iters = batch_gradient_descent(matrix_x, matrix_y, theta, ALPHA, 5, MAX_ITER)
print 'theta=',resultTheta
print 'iters=',iters
运行结果
ALPHA = 0.05ALPHA = 0.05
theta= [-0.08445285887795494, 1.7887820818368738]
iters= 1025
theta= [-0.08388979324755381, 1.7885951009289043]
iters= 772
[Finished in 0.5s]
ALPHA = 0.01
theta= [-0.08387216503392847, 1.7885649678753883]
iters= 3566
theta= [-0.08385924864202322, 1.788568071697816]
iters= 3869
[Finished in 0.1s]
ALPHA = 0.1
theta= [588363545.9596066, -664661366.4562845]
iters= 5001
theta= [-0.09199523483489512, 1.7944581778450577]
iters= 516
[Finished in 0.2s]
总结
梯度下降法是一种最优化问题求解的算法。有批量梯度和随机梯度两种不同的迭代思路。他们有以下的差异:
批量梯度收敛速度慢,随机梯度收敛速度快。
批量梯度是在θ更新前对所有样例汇总误差,而随机梯度下降的权值是通过考查某个样本来更新的
批量梯度的开销大,随机梯度的开销小。数据分析师培训
使用梯度下降法时需要寻找出一个最好的学习效率。这样可以使得使用最少的迭代次数达到我们需要的精度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19