cd /opt/linuxsir
tar -zxvf hadoop-2.7.3.tar.gz
ls
mv hadoop-2.7.3 /opt/linuxsir/hadoop
在192.168.31.131虚拟机上编辑/root/.bashrc文件,然后复制到192.168.31.132、192.168.31.133
echo "" >> /root/.bashrc
echo "export HADOOP_PREFIX=/opt/linuxsir/hadoop" >> /root/.bashrc
echo "export HADOOP_HOME=$HADOOP_PREFIX" >> /root/.bashrc
echo "export HADOOP_COMMON_HOME=$HADOOP_PREFIX" >> /root/.bashrc
echo "export HADOOP_CONF_DIR=$HADOOP_PREFIX/etc/hadoop" >> /root/.bashrc
echo "export HADOOP_HDFS_HOME=$HADOOP_PREFIX" >> /root/.bashrc
echo "export HADOOP_MAPRED_HOME=$HADOOP_PREFIX" >> /root/.bashrc
echo "export HADOOP_YARN_HOME=$HADOOP_PREFIX" >> /root/.bashrc
echo "export PATH=$PATH:$HADOOP_PREFIX/sbin:$HADOOP_PREFIX/bin" >> /root/.bashrc
echo "export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib/native"" >> /root/.bashrc
echo "export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native" >> /root/.bashrc
echo "export CLASSPATH=$CLASSPATH:/opt/linuxsir/hadoop/lib/*" >> /root/.bashrc
cat /root/.bashrc
\在192.168.31.131上,复制/root/.bashrc到132和133
scp -r /root/.bashrc root@192.168.31.132:/root/.bashrc
scp -r /root/.bashrc root@192.168.31.133:/root/.bashrc
\在192.168.31.131上,在131/132/133三台机器上运行/root/.bashrc,刷新环境
cd
source /root/.bashrc
ssh root@192.168.31.132 source /root/.bashrc
ssh root@192.168.31.133 source /root/.bashrc
cd /opt/linuxsir/hadoop \进入/opt/linuxsir/hadoop目录
rm -rf /opt/linuxsir/hadoop/tmp
rm -rf /opt/linuxsir/hadoop/hdfs
mkdir /opt/linuxsir/hadoop/tmp \创建tmp目录
mkdir -p /opt/linuxsir/hadoop/hdfs/data /opt/linuxsir/hadoop/hdfs/name \创建hdfs的data、name子目录
\还要针对hd-slave1,hd-slave2等两个节点上执行上述命令,然后再初始化hdfs
ssh root@192.168.31.132 rm -rf /opt/linuxsir/hadoop/tmp
ssh root@192.168.31.132 rm -rf /opt/linuxsir/hadoop/hdfs
ssh root@192.168.31.132 mkdir /opt/linuxsir/hadoop/tmp
ssh root@192.168.31.132 mkdir -p /opt/linuxsir/hadoop/hdfs/data /opt/linuxsir/hadoop/hdfs/name
ssh root@192.168.31.133 rm -rf /opt/linuxsir/hadoop/tmp
ssh root@192.168.31.133 rm -rf /opt/linuxsir/hadoop/hdfs
ssh root@192.168.31.133 mkdir /opt/linuxsir/hadoop/tmp
ssh root@192.168.31.133 mkdir -p /opt/linuxsir/hadoop/hdfs/data /opt/linuxsir/hadoop/hdfs/name
对若干配置文件进行设置,保证Hadoop能够正常启动。
(1) 主要的配置文件包括HADOOP_HOME目录下的
(2) 并且为如下文件配置环境变量
(3)master和slave
编辑/opt/linuxsir/hadoop/etc/hadoop目录下的core-site.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>hadoop.tmp.dir</name>
<value>file:///opt/linuxsir/hadoop/tmp</value>
</property>
<property>
<name>fs.defaultFS</name>
<value>hdfs://hd-master:9000</value><!-- NameNode URI -->
</property>
<property>
<name>io.file.buffer.size</name>
<value>131702</value>
</property>
</configuration>
编辑/opt/linuxsir/hadoop/etc/hadoop目录下的hdfs-site.xml文件,内容如下
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:///opt/linuxsir/hadoop/hdfs/name</value> <!-- 本机name目录for NameNode -->
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>file:///opt/linuxsir/hadoop/hdfs/data</value> <!-- 本机data目录for DataNode -->
</property>
<property>
<name>dfs.replication</name> <!-- 数据块副本数量 -->
<value>2</value>
</property>
<property>
<name>dfs.webhdfs.enabled</name>
<value>true</value>
</property>
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>hd-master:9001</value>
</property>
</configuration>
在/opt/linuxsir/hadoop/etc/hadoop目录下,复制mapred-site.xml.template到mapred-site.xml,并且进行编辑
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value> <!--yarn or yarn-tez-->
</property>
<property>
<name>mapreduce.jobhistory.address</name>
<value>hd-master:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>hd-master:19888</value>
</property>
<property>
<name>mapreduce.map.memory.mb</name> <!-- memory for map task -->
<value>64</value>
</property>
<property>
<name>mapreduce.reduce.memory.mb</name> <!-- memory for reduce task -->
<value>128</value>
</property>
<property>
<name>mapreduce.task.io.sort.mb</name>
<value>32</value>
</property>
<property>
<name>mapreduce.map.java.opts</name> <!-- settings for JVM map task -->
<value>-Xms128m -Xmx256m</value>
</property>
<property>
<name>mapreduce.reduce.java.opts</name> <!-- settings for JVM reduce task -->
<value>-Xms128m -Xmx256m</value>
</property>
</configuration>
在/opt/linuxsir/hadoop/etc/hadoop编辑yarn-site.xml
文件,对YARN资源管理器的ResourceManager和NodeManagers节点、端口、内存分配等进行配置
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>hd-master</value>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>hd-master:9032</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>hd-master:9030</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>hd-master:9031</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address</name>
<value>hd-master:9033</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address</name>
<value>hd-master:9099</value>
</property>
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>2048</value>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>2048</value>
</property>
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>1024</value>
</property>
<property>
<name>yarn.app.mapreduce.am.resource.mb</name>
<value>1024</value>
</property>
<property>
<name>yarn.app.mapreduce.am.command-opts</name>
<value>-Xms128m -Xmx256m</value>
</property>
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
<property>
<name>yarn.nodemanager.vmem-pmem-ratio</name>
<value>8</value>
</property>
<property>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>1</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
</configuration>
进入hadoop-env.sh脚本文件所在目录/opt/linuxsir/hadoop/etc/Hadoop
export JAVA_HOME=/opt/linuxsir/java/jdk
接着,设置/opt/linuxsir/hadoop/etc/hadoop目录下yarn-env.sh脚本文件的JAVA_HOME变量,内容如下
export JAVA_HOME=/opt/linuxsir/java/jdk
如果NodeManager因为内存不足,而启动不起来,那么yarn-env.sh文件需要做如下修改,即JAVA_HEAP_MAX改为3G
JAVA_HEAP_MAX=-Xmx3072m
修改/opt/linuxsir/hadoop/etc/hadoop/masters文件和/opt/linuxsir/hadoop/etc/hadoop/slaves文件,目的是指定主节点和从节点列表。
/opt/linuxsir/hadoop/etc/hadoop/masters文件的内容如下,即主节点为hd-master
hd-master
/opt/linuxsir/hadoop/etc/hadoop/slaves文件的内容如下,即从节点为hd-slave1和hd-slave2
hd-slave1
hd-slave2
从192.168.31.131虚拟机复制Hadoop到其它各个节点,包括192.168.31.132、192.168.31.133。 在192.168.31.131上运行如下命令
chmod a+rwx -R /opt/linuxsir \设置/opt/linuxsir的存取权限
ssh root@192.168.31.132 chmod a+rwx -R /opt/linuxsir
ssh root@192.168.31.133 chmod a+rwx -R /opt/linuxsir
scp -r /root/.bashrc root@192.168.31.132:/root/.bashrc \复制/root/.bashrc
scp -r /root/.bashrc root@192.168.31.133:/root/.bashrc
scp -r /opt/linuxsir/hadoop hd-slave1:/opt/linuxsir \复制/opt/linuxsir/hadoop
scp -r /opt/linuxsir/hadoop hd-slave2:/opt/linuxsir
source ~/.bashrc \刷新环境变量
ssh root@192.168.31.132 source ~/.bashrc
ssh root@192.168.31.133 source ~/.bashrc
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。 它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。 扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10