
交叉表显示了每个变量的不同类别组合中观察到的频率或计数。通俗地说,就是根据不同列的数据统计了频数
df = pd.DataFrame(
{ 'High': ["高", "高", "高", "中", "中", "中", "低", "低", "低", "高", "低"],
'Weight': ["重", "轻", "中", "中", "轻", "重", "重", "轻", "中", "重", "轻"]
})
df
pd.crosstab(df['High'], df['Weight'])
Weight | 中 | 轻 | 重 |
---|---|---|---|
High | |||
中 | 1 | 1 | 1 |
低 | 1 | 2 | 1 |
高 | 1 | 1 | 2 |
双层crosstab
df = pd.DataFrame(
{ 'High': ["高", "高", "高", "中", "中", "中", "低", "低", "低", "高", "低"],
'Weight': ["重", "轻", "中", "中", "轻", "重", "重", "轻", "中", "重", "轻"],
'Size': ["大", "中", "小", "中", "中", "大", "中", "小", "小", "大", "小"]})
df
High | Weight | Size | |
---|---|---|---|
0 | 高 | 重 | 大 |
1 | 高 | 轻 | 中 |
2 | 高 | 中 | 小 |
3 | 中 | 中 | 中 |
4 | 中 | 轻 | 中 |
5 | 中 | 重 | 大 |
6 | 低 | 重 | 中 |
7 | 低 | 轻 | 小 |
8 | 低 | 中 | 小 |
9 | 高 | 重 | 大 |
10 | 低 | 轻 | 小 |
pd.crosstab(df['High'], [df['Weight'], df['Size']], rownames=['High'], colnames=['Weight', 'Size'])
Weight | 中 | 轻 | 重 | |||
---|---|---|---|---|---|---|
Size | 中 | 小 | 中 | 小 | 中 | 大 |
High | ||||||
中 | 1 | 0 | 1 | 0 | 0 | 1 |
低 | 0 | 1 | 0 | 2 | 1 | 0 |
高 | 0 | 1 | 1 | 0 | 0 | 2 |
另一种 宽表转长表 pd.wide_to_long()
np.random.seed(123)
df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"},
"A1980" : {0 : "d", 1 : "e", 2 : "f"},
"B1970" : {0 : 2.5, 1 : 1.2, 2 : .7},
"B1980" : {0 : 3.2, 1 : 1.3, 2 : .1},
"X" : dict(zip(range(3), np.random.randn(3)))
})
df["id"] = df.index
df
A1970 | A1980 | B1970 | B1980 | X | id | |
---|---|---|---|---|---|---|
0 | a | d | 2.5 | 3.2 | -1.085631 | 0 |
1 | b | e | 1.2 | 1.3 | 0.997345 | 1 |
2 | c | f | 0.7 | 0.1 | 0.282978 | 2 |
把id
列用作标识列
pd.wide_to_long(df, ["A", "B"], i="id", j="year")
X | A | B | ||
---|---|---|---|---|
id | year | |||
0 | 1970 | -1.085631 | a | 2.5 |
1 | 1970 | 0.997345 | b | 1.2 |
2 | 1970 | 0.282978 | c | 0.7 |
0 | 1980 | -1.085631 | d | 3.2 |
1 | 1980 | 0.997345 | e | 1.3 |
2 | 1980 | 0.282978 | f | 0.1 |
df = pd.DataFrame({
'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3],
'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3],
'ht1': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1],
'ht2': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9]
})
df
famid | birth | ht1 | ht2 | |
---|---|---|---|---|
0 | 1 | 1 | 2.8 | 3.4 |
1 | 1 | 2 | 2.9 | 3.8 |
2 | 1 | 3 | 2.2 | 2.9 |
3 | 2 | 1 | 2.0 | 3.2 |
4 | 2 | 2 | 1.8 | 2.8 |
5 | 2 | 3 | 1.9 | 2.4 |
6 | 3 | 1 | 2.2 | 3.3 |
7 | 3 | 2 | 2.3 | 3.4 |
8 | 3 | 3 | 2.1 | 2.9 |
把famid
, birth
两列用作标识列
l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age')
l
ht | |||
---|---|---|---|
famid | birth | age | |
1 | 1 | 1 | 2.8 |
2 | 3.4 | ||
2 | 1 | 2.9 | |
2 | 3.8 | ||
3 | 1 | 2.2 | |
2 | 2.9 | ||
2 | 1 | 1 | 2.0 |
2 | 3.2 | ||
2 | 1 | 1.8 | |
2 | 2.8 | ||
3 | 1 | 1.9 | |
2 | 2.4 | ||
3 | 1 | 1 | 2.2 |
2 | 3.3 | ||
2 | 1 | 2.3 | |
2 | 3.4 | ||
3 | 1 | 2.1 | |
2 | 2.9 |
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09