在Pandas中,时间序列(Time Series)是一种特殊的数据类型,用于处理时间相关的数据。Pandas提供了丰富的功能和方法,方便对时间序列数据进行处理和分析。下面是一些针对时间序列的常用操作:
方式① 使用to_datetime
创建时间序列:直接传入列表即可
import pandas as pd
# 将列表转换为时间戳
date_range = pd.to_datetime(['2024-01-01', '2024-01-02', '2024-01-03'])
date_range
DatetimeIndex(['2024-01-01', '2024-01-02', '2024-01-03'], dtype='datetime64[ns]', freq=None)
方式② 使用pd.date_range()
创建一段连续的时间范围:使用指定参数即可
import pandas as pd
date_range = pd.date_range(start='2024-01-01', end='2024-12-31', freq='D')
date_range
DatetimeIndex(['2024-01-01', '2024-01-02', '2024-01-03', '2024-01-04',
'2024-01-05', '2024-01-06', '2024-01-07', '2024-01-08',
'2024-01-09', '2024-01-10',
...
'2024-12-22', '2024-12-23', '2024-12-24', '2024-12-25',
'2024-12-26', '2024-12-27', '2024-12-28', '2024-12-29',
'2024-12-30', '2024-12-31'],
dtype='datetime64[ns]', length=366, freq='D')
其中,start是起始日期,end是结束日期,freq是频率,这里设置为'D'表示每天。
方式③ 使用Timestamp()
函数创建一个特定的时间戳:使用指定参数即可
import pandas as pd
timestamp = pd.Timestamp(year=2023, month=1, day=1, hour=12, minute=30, second=45)
timestamp
Timestamp('2023-01-01 12:30:45')
方式④ 使用 datetime 模块创建时间戳:使用指定参数即可
import pandas as pd
from datetime import datetime
timestamp = datetime(2023, 1, 1, 12, 30, 45)
print(timestamp)
2023-01-01 12:30:45
计算一下两个时间数据之差
import pandas as pd
# 创建两个固定时间
start_time = pd.Timestamp('2024-01-01 12:00:00')
end_time = pd.Timestamp('2024-01-02 14:30:00')
# 计算时间差
time_diff = end_time - start_time
time_diff
Timedelta('1 days 02:30:00')
一个固定时间加上pd.Timedelta
类型的时间差
pd.Timestamp('2024-01-02 14:30:00')+pd.Timedelta('1 days 02:30:00')
Timestamp('2024-01-03 17:00:00')
接下来,我们看看日期做索引的情况
将日期作为索引创建时间序列:
import pandas as pd
data = [1, 2, 3, 4, 5]
dates = pd.date_range(start='2024-01-01', periods=5, freq='D')
ts = pd.Series(data, index=dates)
ts
2024-01-01 1
2024-01-02 2
2024-01-03 3
2024-01-04 4
2024-01-05 5
Freq: D, dtype: int64
其中,periods是时间序列的长度,freq是频率,这里设置为'D'表示每天。
import pandas as pd
ts['2024-01-01']
1
使用日期范围进行切片:
import pandas as pd
ts['2024-01-01':'2024-01-05']
2024-01-01 1
2024-01-02 2
2024-01-03 3
2024-01-04 4
2024-01-05 5
Freq: D, dtype: int64
也可以使用切片操作对数据进行访问
import pandas as pd
ts[1:4]
2024-01-02 2
2024-01-03 3
2024-01-04 4
Freq: D, dtype: int64
时间序列的重采样: 将时间序列从高频率转换为低频率:
import pandas as pd
ts.resample('W').mean()
2024-01-07 3.0
Freq: W-SUN, dtype: float64
其中,'W'表示按周进行重采样,mean()表示计算每周的平均值。
时间序列的滚动计算: 计算滚动平均值:
import pandas as pd
ts.rolling(window=3).mean()
2024-01-01 NaN
2024-01-02 NaN
2024-01-03 2.0
2024-01-04 3.0
2024-01-05 4.0
Freq: D, dtype: float64
其中,window=3表示窗口大小为3,即计算每3个数据的平均值。
时间序列的时间偏移: 将时间序列向前或向后移动:
import pandas as pd
ts.shift(1)
2024-01-01 NaN
2024-01-02 1.0
2024-01-03 2.0
2024-01-04 3.0
2024-01-05 4.0
Freq: D, dtype: float64
其中,1表示向后移动1个时间单位。
在 Pandas 中,可以使用 dt 访问器来访问时间戳或时间序列中的各个时间部分,例如年、月、日、小时、分钟、秒等。通过使用 dt 访问器,你可以方便地提取和操作时间信息。
下面是一些常用的 dt 访问器的示例:
import pandas as pd
# 创建一个时间序列
timestamps = pd.Series(pd.date_range('2023-01-01', periods=5, freq='D'))
timestamps
0 2023-01-01
1 2023-01-02
2 2023-01-03
3 2023-01-04
4 2023-01-05
dtype: datetime64[ns]
# 提取年份
year = timestamps.dt.year
year
0 2023
1 2023
2 2023
3 2023
4 2023
dtype: int64
# 提取月份
month = timestamps.dt.month
month
0 1
1 1
2 1
3 1
4 1
dtype: int64
# 提取日期
day = timestamps.dt.day
day
0 1
1 2
2 3
3 4
4 5
dtype: int64
# 提取小时
hour = timestamps.dt.hour
hour
0 0
1 0
2 0
3 0
4 0
dtype: int64
# 提取分钟
minute = timestamps.dt.minute
minute
0 0
1 0
2 0
3 0
4 0
dtype: int64
# 提取秒数
second = timestamps.dt.second
second
0 0
1 0
2 0
3 0
4 0
dtype: int64
# 获取季度
quarter = timestamps.dt.quarter
quarter
0 1
1 1
2 1
3 1
4 1
dtype: int64
# 获取周数
week = timestamps.dt.isocalendar().week
week
0 52
1 1
2 1
3 1
4 1
Name: week, dtype: UInt32
# 获取星期几的名称
day_name = timestamps.dt.day_name()
day_name
0 Sunday
1 Monday
2 Tuesday
3 Wednesday
4 Thursday
dtype: object
# 获取该日期是一年中的第几天
day_of_year = timestamps.dt.dayofyear
day_of_year
0 1
1 2
2 3
3 4
4 5
dtype: int64
# 获取该日期是一周中的第几天(星期一为1,星期日为7)
day_of_week = timestamps.dt.dayofweek + 1
day_of_week
0 7
1 1
2 2
3 3
4 4
dtype: int64
# 获取该日期是一个月中的第几天
day_of_month = timestamps.dt.day
day_of_month
0 1
1 2
2 3
3 4
4 5
dtype: int64
# 获取该日期所在月份的最后一天
end_of_month = timestamps.dt.daysinmonth
end_of_month
0 31
1 31
2 31
3 31
4 31
dtype: int64
import pandas as pd
# 创建时间戳序列
ts = pd.Series(pd.to_timedelta(np.arange(10),unit='m'))
ts
0 0 days 00:00:00
1 0 days 00:01:00
2 0 days 00:02:00
3 0 days 00:03:00
4 0 days 00:04:00
5 0 days 00:05:00
6 0 days 00:06:00
7 0 days 00:07:00
8 0 days 00:08:00
9 0 days 00:09:00
dtype: timedelta64[ns]
# 提取时间戳中的秒数
seconds = ts.dt.seconds
seconds
0 0
1 60
2 120
3 180
4 240
5 300
6 360
7 420
8 480
9 540
dtype: int64
seconds = ts.dt.to_pytimedelta()
seconds
array([datetime.timedelta(0), datetime.timedelta(seconds=60),
datetime.timedelta(seconds=120), datetime.timedelta(seconds=180),
datetime.timedelta(seconds=240), datetime.timedelta(seconds=300),
datetime.timedelta(seconds=360), datetime.timedelta(seconds=420),
datetime.timedelta(seconds=480), datetime.timedelta(seconds=540)],
dtype=object)
以上是Pandas针对时间序列的一些常用操作和示例代码
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30