从导数的物理意义理解梯度下降
机器学习中常会用随机梯度下降法求解一个目标函数 L(Θ) 的优化问题,并且常是最小化的一个优化问题:
min L(Θ)
我们所追求的是目标函数能够快速收敛或到达一个极小值点。而随机梯度法操作起来也很简单,不过是求偏导数而已,但是为什么是这样呢?为什么算个偏导数就能说下降得最快?初期并不很明了,后来看过一些数学相关的知识才稍微明白了一点,一下内容算是一个理解梯度的渐进过程。如果不当之处,欢迎指正。
以下关于梯度下降法,导数,偏导数的内容可在维基百科中找到,关于方向导数与梯度的内容可在高等数学书中找到。
梯度下降法
梯度下降法(Gradient descent)是一个最优化算法,通常也称为最速下降法。
梯度下降法,基于这样的观察:如果实值函数F(x)在点a处可微且有定义,那么函数F(x)在a点沿着梯度相反的方向 ??F(a) 下降最快。
因而,如果b=a?γ?F(a)
对于γ>0为一个够小数值时成立,那么F(a)≥F(b)。
考虑到这一点,我们可以从函数F的局部极小值的初始估计 x0 出发,并考虑如下序列
x0, x1, x2, …
使得xn+1=xn?γn?F(xn), n≥0。
因此可得到
F(x0)≥F(x1)≥F(x2)≥?,
如果顺利的话序列(xn)收敛到期望的极值。注意每次迭代步长γ可以改变。
下面的图片示例了这一过程,这里假设F定义在平面上,并且函数图像是一个碗形。蓝色的曲线是等高线(水平集),即函数F为常数的集合构成的曲线。红色的箭头指向该点梯度的反方向。(一点处的梯度方向与通过该点的等高线垂直)。沿着梯度下降方向,将最终到达碗底,即函数F值最小的点。
求解机器学习中的min问题,可以采用梯度下降法。
为何可能会有下面的缺点,可在梯度下降法的维基百科中看到更多内容。这里仅当一个搬运工而已,梯度下降法的缺点:
靠近极小值时速度减慢。
直线搜索可能会产生一些问题。
可能会’之字型’地下降。
导数
导数(Derivative)是微积分学中重要的基础概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。
当函数 f 的自变量在一点 x0 上产生一个增量 h 时,
函数输出值的增量与自变量增量h的比值在h趋于0时的极限如果存在,即为f在x0处的导数,记作f′(x0)、dfdx(x0)或dfdx∣∣x=x0.
几何意义上导数表示函数在这一点切线的斜率。
偏导数
在数学中,一个多变量的函数的偏导数是它关于其中一个变量的导数,而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。
假设?是一个多元函数。例如:
z=f(x,y)=x2+xy+y2
f=x2+xy+y2的图像。我们希望求出函数在点(1, 1, 3)的对x的偏导数;对应的切线与xOz平面平行。
因为曲面上的每一点都有无穷多条切线,描述这种函数的导数相当困难。偏导数就是选择其中一条切线,并求出它的斜率。通常,最感兴趣的是垂直于y轴(平行于xOz平面)的切线,以及垂直于x轴(平行于yOz平面)的切线。
一种求出这些切线的好办法是把其他变量视为常数。例如,欲求出以上的函数在点(1, 1, 3)的与xOz平面平行的切线。上图中显示了函数f=x2+xy+y2的图像以及这个平面。下图中显示了函数在平面y = 1上是什么样的。我们把变量y视为常数,通过对方程求导,我们发现?在点(x, y, z)的。我们把它记为:
?z?x=2x+y,于是在点(1, 1, 3)的与xOz平面平行的切线的斜率是3。?f?x=3 在点(1, 1, 3),或称“f在(1, 1, 3)的关于x的偏导数是3”。
在几何意义上偏导数即为函数在坐标轴方向上的变化率。
方向导数
方向导数是分析学特别是多元微积分中的概念。一个标量场在某点沿着某个向量方向上的方向导数,描绘了该点附近标量场沿着该向量方向变动时的瞬时变化率。方向导数是偏导数的概念的推广。
方向导数定义式:
方向导数计算公式(在推导方向导数与梯度关系时用到):
几何意义上方向导数为函数在某点沿着其他特定方向上的变化率。
梯度
在一个数量场中,函数在给定点处沿不同的方向,其方向导数一般是不相同的。那么沿着哪一个方向其方向导数最大,其最大值为多少,为此引进一个很重要的概念–梯度。函数在点p0处沿哪一方向增加的速度最快?
方向导数与梯度的关系
函数在某一点处的方向导数在其梯度方向上达到最大值,此最大值即梯度的范数。
这就是说,沿梯度方向,函数值增加最快。同样可知,方向导数的最小值在梯度的相反方向取得,此最小值为最大值的相反数,从而沿梯度相反方向函数值的减少最快。详细内容:方向导数与梯度。
在机器学习中往往是最小化一个目标函数L,理解了上面的内容,便很容易理解在SGD中常用的更新公式:
θ=θ?γ?L?θ
γ在机器学习中常被称为学习率(learning rate),也就是上面梯度下降法中的步长。
通过算出目标函数的梯度并在其反方向更新完参数θ,在此过程完成后也便是达到了函数值减少最快的效果,经过迭代以后目标函数即可很快地到达一个极小值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31