京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从导数的物理意义理解梯度下降
机器学习中常会用随机梯度下降法求解一个目标函数 L(Θ) 的优化问题,并且常是最小化的一个优化问题:
min L(Θ)
我们所追求的是目标函数能够快速收敛或到达一个极小值点。而随机梯度法操作起来也很简单,不过是求偏导数而已,但是为什么是这样呢?为什么算个偏导数就能说下降得最快?初期并不很明了,后来看过一些数学相关的知识才稍微明白了一点,一下内容算是一个理解梯度的渐进过程。如果不当之处,欢迎指正。
以下关于梯度下降法,导数,偏导数的内容可在维基百科中找到,关于方向导数与梯度的内容可在高等数学书中找到。
梯度下降法
梯度下降法(Gradient descent)是一个最优化算法,通常也称为最速下降法。
梯度下降法,基于这样的观察:如果实值函数F(x)在点a处可微且有定义,那么函数F(x)在a点沿着梯度相反的方向 ??F(a) 下降最快。
因而,如果b=a?γ?F(a)
对于γ>0为一个够小数值时成立,那么F(a)≥F(b)。
考虑到这一点,我们可以从函数F的局部极小值的初始估计 x0 出发,并考虑如下序列
x0, x1, x2, …
使得xn+1=xn?γn?F(xn), n≥0。
因此可得到
F(x0)≥F(x1)≥F(x2)≥?,
如果顺利的话序列(xn)收敛到期望的极值。注意每次迭代步长γ可以改变。
下面的图片示例了这一过程,这里假设F定义在平面上,并且函数图像是一个碗形。蓝色的曲线是等高线(水平集),即函数F为常数的集合构成的曲线。红色的箭头指向该点梯度的反方向。(一点处的梯度方向与通过该点的等高线垂直)。沿着梯度下降方向,将最终到达碗底,即函数F值最小的点。
求解机器学习中的min问题,可以采用梯度下降法。
为何可能会有下面的缺点,可在梯度下降法的维基百科中看到更多内容。这里仅当一个搬运工而已,梯度下降法的缺点:
靠近极小值时速度减慢。
直线搜索可能会产生一些问题。
可能会’之字型’地下降。
导数
导数(Derivative)是微积分学中重要的基础概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。
当函数 f 的自变量在一点 x0 上产生一个增量 h 时,
函数输出值的增量与自变量增量h的比值在h趋于0时的极限如果存在,即为f在x0处的导数,记作f′(x0)、dfdx(x0)或dfdx∣∣x=x0.
几何意义上导数表示函数在这一点切线的斜率。
偏导数
在数学中,一个多变量的函数的偏导数是它关于其中一个变量的导数,而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。
假设?是一个多元函数。例如:
z=f(x,y)=x2+xy+y2
f=x2+xy+y2的图像。我们希望求出函数在点(1, 1, 3)的对x的偏导数;对应的切线与xOz平面平行。
因为曲面上的每一点都有无穷多条切线,描述这种函数的导数相当困难。偏导数就是选择其中一条切线,并求出它的斜率。通常,最感兴趣的是垂直于y轴(平行于xOz平面)的切线,以及垂直于x轴(平行于yOz平面)的切线。
一种求出这些切线的好办法是把其他变量视为常数。例如,欲求出以上的函数在点(1, 1, 3)的与xOz平面平行的切线。上图中显示了函数f=x2+xy+y2的图像以及这个平面。下图中显示了函数在平面y = 1上是什么样的。我们把变量y视为常数,通过对方程求导,我们发现?在点(x, y, z)的。我们把它记为:
?z?x=2x+y,于是在点(1, 1, 3)的与xOz平面平行的切线的斜率是3。?f?x=3 在点(1, 1, 3),或称“f在(1, 1, 3)的关于x的偏导数是3”。
在几何意义上偏导数即为函数在坐标轴方向上的变化率。
方向导数
方向导数是分析学特别是多元微积分中的概念。一个标量场在某点沿着某个向量方向上的方向导数,描绘了该点附近标量场沿着该向量方向变动时的瞬时变化率。方向导数是偏导数的概念的推广。
方向导数定义式:
方向导数计算公式(在推导方向导数与梯度关系时用到):
几何意义上方向导数为函数在某点沿着其他特定方向上的变化率。
梯度
在一个数量场中,函数在给定点处沿不同的方向,其方向导数一般是不相同的。那么沿着哪一个方向其方向导数最大,其最大值为多少,为此引进一个很重要的概念–梯度。函数在点p0处沿哪一方向增加的速度最快?
方向导数与梯度的关系
函数在某一点处的方向导数在其梯度方向上达到最大值,此最大值即梯度的范数。
这就是说,沿梯度方向,函数值增加最快。同样可知,方向导数的最小值在梯度的相反方向取得,此最小值为最大值的相反数,从而沿梯度相反方向函数值的减少最快。详细内容:方向导数与梯度。
在机器学习中往往是最小化一个目标函数L,理解了上面的内容,便很容易理解在SGD中常用的更新公式:
θ=θ?γ?L?θ
γ在机器学习中常被称为学习率(learning rate),也就是上面梯度下降法中的步长。
通过算出目标函数的梯度并在其反方向更新完参数θ,在此过程完成后也便是达到了函数值减少最快的效果,经过迭代以后目标函数即可很快地到达一个极小值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16