从朴素贝叶斯分类器到贝叶斯网络
一、贝叶斯公式(一些必备的数学基础)
贝叶斯(Thomas Bayes)是生活在十八世纪的一名英国牧师和数学家。因为历史久远,加之他没有太多的著述留存,今天的人们对贝叶斯的研究所知甚少。唯一知道的是,他提出了概率论中的贝叶斯公式。但从他曾经当选英国皇家科学学会会员(类似于院士)来看,他的研究工作在当时的英国学术界已然受到了普遍的认可。
事实上,在很长一段时间里,人们都没有注意到贝叶斯公式所潜藏的巨大价值。直到二十世纪人工智能、机器学习等崭新学术领域的出现,人们才从一堆早已蒙灰的数学公式中发现了贝叶斯公式的巨大威力。为了方便后续内容的介绍,这里我们先来简单复习一下概率论中的一些基本知识。
事件A在另外一个事件B已经发生条件下的发生概率,称为条件概率,记为P(A|B)。
两个事件共同发生的概率称为联合概率。A与B的联合概率表示为 P(AB) 或者P(A,B)。
进而有,P(AB) = P(B)P(A|B)=P(A)=P(B|A)。这也就导出了最简单形式的贝叶斯公式,即
P(A|B)=P(B|A)*P(A)/P(B)
以及条件概率的链式法则
P(A1,A2,...,An) = P(An|A1,A2,...,An-1)P(An-1|A1,A2,...,An-2)...P(A2|A1)P(A1)
概率论中还有一个全概率公式
由此可进一步导出完整的贝叶斯公式
二、朴素贝叶斯分类器(Naïve Baysian classifier)
分类是机器学习和数据挖掘中最基础的一种工作。假设现在我们一组训练元组(Training tuples),或称训练样例,以及与之相对应的分类标签(Class labels)。每个元组都被表示成n维属性向量X=(x1, x2, ..., xn)的形式,而且一共有K个类,标签分别为C1, C2, ..., Ck。分类的目的是当给定一个元组X时,模型可以预测其应当归属于哪个类别。
朴素贝叶斯分类器的原理非常简单,就是基于贝叶斯公式进行推理,所以才叫做“朴素”。对于每一个类别Ci, 利用贝叶斯公式来估计在给定训练元组X时的条件概率p(Ci|X),即
P(Ci|X) = P(X|Ci)P(Ci)/P(X)
当且仅当概率P(Ci|X)在所有的P(Ck|X)中取值最大时,就认为X属于Ci。更进一步,因为P(X)对于所有的类别来说都是恒定的,所以其实只需要P(Ci|X) = P(X|Ci)P(Ci)最大化即可。
应用朴素贝叶斯分类器时必须满足条件:所有的属性都是条件独立的。也就是说,在给定条件的情况下,属性之间是没有依赖关系的。即
为了演示贝叶斯分类器,来看下面这个例子。我们通过是否头疼、咽痛、咳嗽以及体温高低来预测一个人是普通感冒还是流感。
上面是我们提供的训练数据。现在有一个病人到诊所看病,他的症状是:severeheadache, no soreness, normaltemperature and with cough。请问他患的是普通感冒还是流感?分析易知,这里的分类标签有Flu 和Cold两种。于是最终要计算的是下面哪个概率更高。
P( Flu| Headache = severe, Sore = no,Temperature = normal, Cough = yes)
≅P(Flu)*P(Headache= severe|Flu)*P(Sore= no|Flu)*P(Temperature= normal |Flu)*P(Cough = yes|Flu)
P( Cold| Headache = severe, Sore = no,Temperature = normal, Cough = yes)
≅P(Cold)*P(Headache= severe|Cold)*P(Sore= no|Cold)*P(Temperature= normal |Cold)*P(Cough = yes |Cold)
为了计算上面这个结果,我们需要通过已知数据(训练数据)让机器自己“学习”(建立)一个“模型”。由已知模型很容以得出下表中的结
以及
e= small value = 10^-7(one can use e to be less than 1/n where n is the number of training instances)
P( Flu| Headache = severe, Sore = no,Temperature = normal, Cough = yes)
= P(Flu)*P(Headache = severe|Flu)*P(Sore= no|Flu)*P(Temperature = normal |Flu)*P(Cough = yes|Flu)
= 3/5 × 2/3 × e × 2/3 × 3/3 = 0.26e
P( Cold| Headache = severe, Sore = no,Temperature = normal, Cough = yes)
~ P(Cold)*P(Headache =severe|Cold)*P(Sore = no|Cold)*P(Temperature = normal |Cold)*P(Cough = yes|Cold)
= 2/5 × e × ½ × 1 × ½ = 0.1e
显然P(Flu) > P(Cold),所以我们的诊断(预测,分类)结果是 Flu。
最后讨论一下朴素贝叶斯分类器的特点(来自网上资料总结,我就不翻译了):
我们将把贝叶斯网络留待下一篇文章中介绍(未完,待续...)。
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10