在解释机器学习模型预测结果时,特征重要性评估至关重要。其中,SHAP(SHapley Additive exPlanations)作为一种基于博弈论的方法,通过计算每个特征对模型输出的贡献,帮助我们深入理解模型的预测准确性以及特征之间的相互作用。
选择基准值: 在计算SHAP值之前,首先需选定一个基准值作为参考点,通常可以是所有特征的平均值或某个随机样本。
计算特征子集的预测差异: 针对每个特征,计算包含该特征和不包含该特征时的预测输出差异。这些差异反映了特征对模型预测的影响程度。
加权平均: 将所有可能的特征子集的预测差异进行加权平均,从而得到每个特征的Shapley值。这个过程确保每个特征的重要性都得到公平分配。
可视化和解释: 利用SHAP库提供的工具,如summary_plot和force_plot,可以直观展示SHAP值,帮助我们更好地理解每个特征对模型预测的具体影响。
全局和局部解释: SHAP值不仅在全局层面评估特征的重要性,还能就特定样本的预测结果提供局部解释。
Python库: SHAP提供了一个便捷的Python库,可用于计算和可视化SHAP值。例如,使用shap.TreeExplainer能快速计算树模型的SHAP值。
通过结合博弈论原理和数学优化方法,SHAP值为机器学习模型提供了强大的解释能力,成为理解和改进模型的重要工具。
以CDA认证为例,专业数据分析人士应当熟练掌握SHAP值计算特征重要性的方法。在我的工作中,我曾遇到一项数据挖掘项目,利用SHAP值发现了一些决策树模型中被低估的关键特征,从而成功提升了预测准确率。这在这个项目中,我们首先使用SHAP值对模型的特征重要性进行了全局解释,发现了一些重要特征。然后,我们利用SHAP值对个别样本的预测结果进行局部解释,帮助我们理解模型在每个样本上的预测过程。
通过SHAP值的解释,我们发现了一些之前被忽视的关键特征,这些特征对于模型的预测具有重要影响。基于这些发现,我们对模型进行了调优和改进,加入了新的特征工程方法,并优化了模型参数。
最终,经过调整和改进后的模型在验证集上取得了更高的预测准确率和稳定性,证明了SHAP值在特征重要性评估和模型解释方面的价值。
总的来说,掌握SHAP值计算特征重要性的方法不仅可以提升数据分析专业水平,还能够帮助在实际项目中更好地理解和改进机器学习模型。因此,我认为熟练应用SHAP值是数据分析领域必备的技能之一。您有什么其他问题或者需要进一步了解的内容吗?我可以继续为您提供帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31