从曲线拟合问题窥视机器学习中的相关概念
一直徘徊在机器学习的边缘未敢轻易造次并畏惧其基本原理思想,从每一本厚厚的参考资料中都可以看出机器学习是一门跨越概率论、决策论、信息论以及最优化的学科的综合学科,今天终于鼓足勇气向其挑战,选择该领域经典书籍PRML研读,希望能有点收获。后面的一系列的文章都是从一个初学者的角度来学习机器学习领域的知识。
1. 曲线拟合问题
定义:给定一系列输入xi以及目标值ti,目标是找到一个关于x的函数f(x)能够比较好的拟合给定的输入,并且能够对新给出的x值预测其输出。
问题本身就是一个学习问题,那什么是机器学习呢?通过有限的输入数据以及对应的目标值(也称训练数据)学习到一个模型或者推断函数,并且利用这个模型或者推断函数对新数据进行预测。这里的机器学习一般是指统计机器学习,即基于数据和统计方法。统计学习方法是基于数据构建统计模型从而对数据进行预测与分析,可以分为:监督学习和非监督学习。
a)监督学习:训练数据包括给定的输入及其相应的输出,可以根据输入和输出的类型分为分类问题、标注问题和回归问题。
1) 分类问题: 输出变量为有限个离散变量的预测问题,可以根据离散变量k的个数分为二分类问题(k=2)和多分类问题(k>2),常用方法包括k近邻法、感知机、朴素贝叶斯、决策树等
2) 回归问题:输入变量和输出变量均为连续变量的预测问题,可以根据参数的系数k分为线性回归(k=1)和非线性回归(k>1)。
3) 标注问题:输入变量和输出变量均为变量序列的预测问题,常用方法包括隐马尔科夫模型(HMM)、条件随机场(CRF)
b)非监督学习:训练数据仅包括输入没有指定相应的输出。
1)聚类:在杂乱的数据中发现相似的簇或者数据集合
2)密度估计:发现输入数据的概率密度函数
2. 曲线拟合数据源
在实验中训练数据的来源是人工生成的,即根据某个函数按照一定的分布随机抽取N个数据以及对应的函数值作为训练数据。然后一般真实数据由于种种原因均会产生一定的误差,不会与一个分布完全吻合,所以目标值一般加上一个随机误差(误差分布满足高斯分布)。
本例中选取f(x)=sin(2πx),按照均匀分布随机选取N个数据。
其中绿色曲线为sin(2πx),蓝色圆圈为加上随机误差后的结果。
3. 多项式拟合
首先选择一个比较简单的模型进行学习和预测,即多项式曲线,
y(x,w)=w0+w1x+w2x2+...+wmxM
其中w为自变量x的系数,M为自变量x的项数,也是整个多项式最大的项。学习的目标是找到合适的w和M,使其能够更好的拟合训练数据。由于不同的w和M值对应不同的曲线,即不同的模型或者推断函数,如何去衡量生成的模型好坏呢?
误差函数(error function):用于衡量不同模型的优劣,即度量预测错误的程度,也称之为损失函数或者代价函数,一般有以下几种:
a)0-1损失函数
L(y,f(x))=1,y != f(x);0,y=f(x)
b)平方损失函数
L(y,f(x))=(y-f(x))2
c)绝对损失函数
L(y,f(x))=|y-f(x)|
d)对数损失函数
L(y,f(x))=-log(p(y|x))
模型选择:选择使得误差函数最小的参数。
在本例中选择平方和作为误差函数,即。
由于本例选择的误差函数为w单调的函数,肯定存在最优解w*使得E(w)最小。
下图为M为0、1、3、9时求到的最优w*,红色曲线为求到的多项式曲线。
从上图可以看出,当M为0时曲线的拟合程度最差,M为9时拟合程度最好,即完全拟合使得E(w)为0,这种情况称之为过拟合。
由于机器学习的目的是对新给定的数据进行预测,即不仅仅是完全拟合训练数据,也要对新数据给出一个很好的预测。学习的泛化能力(generalization ability):是指某方法学习到的模型对为知数据预测的能力,是学习方法本质上的重要性质。如果一味的追求对训练数据的预测能力,学习到的模型往往会比真实模型复杂度高,即出现过拟合。
一般通过测试误差来评价学习方法的泛化能力,这里使用残留均方差进行评价(root mean-square):,下图展示了M为0-9时,最优模型在训练数据和测试数据上的测试误差,可以看出当M=9时,对训练数据的误差为0,而对测试数据的误差飙升到最大。分析其本质原因是当M为9时,模型为了更好的拟合数据w取值的波动性非常大。
4. 最优模型选择
产生多拟合问题的主要原因是训练数据太少导致的,或者说模型复杂度过高导致的。对于复杂模型而言,会随着训练数据的增加,减小过拟合问题,下图是增加训练数据时M=9的拟合效果。
在实际应用中,一个启发式的经验是一个模型要到达一定得泛化能力,其训练数据至少为参数个数的5-10倍,当然还会有其他方法避免过拟合问题。
最优模型选择有两种常用的方法:正则化(regularization)和交叉验证(cross validation)
a) 正则化:一般是在误差函数的基础上加上一个正则化项或者罚项,一般是模型复杂度的单独递增函数,模型越复杂,罚值越大。
这里正则项选择为:,||w||2为向量w的平方和。
下图展示的是对于不同λ值对应的测试误差
b) 交叉验证:即将数据进行分割分为训练数据和测试数据,通过训练数据进行模型学习,测试数据进行模型的选择。
1) 简单交叉验证:例如选择80%的数据位训练数据,20%作为测试数据。
2) S折交叉验证:将数据分为S份,每次选择S-1份进行训练,1份用于测试,可以重复S次。
3) 留一交叉验证:留一条数据数据作为测试,比较极端的情况。
对于本例来说λ的选择就可以采用交叉验证的方法进行选择。
5. 总结
通过对曲线拟合问题的定义和简单求解,介绍了机器学习中的概念,当然还有大量概念未涉及到,后续还会继续补充。
对于曲线拟合问题,通过多项式拟合只是最简单的一个方法,后续还会介绍更优美的解决方案。
1) 获取一个有限的训练数据集合
2) 对数据进行特征抽取
4) 确定学习模型的集合
5) 确定模型选择的准则,确定误差函数
6) 上线求解最优模型的算法,即模型的求解
7) 通过学习方法选择最优模型
8) 利用学习到的最优模型对新数据进行预测或者分析
数据分析咨询请扫描二维码
在如今的数据驱动时代,掌握数据分析的工具和方法不仅是提高工作效率的关键,也是开拓职业机会的重要技能。数据分析涉及从数据的 ...
2024-11-08在现代商业环境中,企业正在逐步认识到数据挖掘技术在客户行为分析中的重要性。通过深度分析客户数据,这项技术不仅可以帮助企业 ...
2024-11-08数据挖掘分析是从大量数据中发现隐藏模式和有用信息的过程。尤其是在图数据挖掘中,提供了分析复杂关系和结构的独特视角。图数据 ...
2024-11-08在当今快速发展的商业环境中,提高运营效率已成为企业取得成功的关键因素。企业需要通过优化工作流程、利用技术创新和提升员工技 ...
2024-11-08Python 是一门非常适合初学者学习的编程语言。其简洁明了的语法、丰富的功能库,以及广泛的应用领域,使其成为学习编程的理想选 ...
2024-11-08在当今快速变化的商业环境中,金融数字化已经成为中小企业(SMEs)发展的关键驱动力。通过采用数字工具和技术,中小企业能够提高 ...
2024-11-08中小企业在全球经济中扮演着重要角色,然而,面对数字化浪潮,这些企业如何有效转型成为一大挑战。数字化转型不仅是技术的升级, ...
2024-11-08选择合适的数据分析方法是数据分析流程中的关键环节。它影响最终结论的准确性和可信度。在这个过程中,需要综合考虑数据的性质、 ...
2024-11-08在当今数据驱动的商业环境中,数据分析师扮演着至关重要的角色。他们帮助企业从大量数据中提取有用的洞察,从而推动决策制定和战 ...
2024-11-07在现代商业环境中,商务数据分析师扮演着至关重要的角色。作为联系业务需求与数据洞察之间的桥梁,数据分析师需要具备一系列技能 ...
2024-11-07在现代商业环境中,商务数据分析师扮演着至关重要的角色。作为联系业务需求与数据洞察之间的桥梁,数据分析师需要具备一系列技能 ...
2024-11-07在现代商业环境中,数据挖掘发挥着至关重要的作用。它不仅帮助企业从庞大的数据集中提取有价值的信息,还为企业的决策和业务运营 ...
2024-11-07数据分析可视化是一种通过图形化方式展现数据的技术,它使复杂的数据变得直观易懂,从而帮助我们更好地做出决策。在这个快速发展 ...
2024-11-07数据分析是一项至关重要的技能,尤其在当今数据驱动的世界中。Python以其强大的库和简单的语法成为了数据分析领域的佼佼者。本文 ...
2024-11-07在现代数据驱动的环境中,数据分析师扮演着至关重要的角色。他们需要掌握多种工具,以满足数据分析、处理和可视化的需求。无论是 ...
2024-11-07作为一名业务分析师,你将发现自己处于企业决策和数据驱动战略之间的桥梁位置。这个角色要求掌握一系列技能,以便有效地将数据转 ...
2024-11-07CDA中科院城市环境研究所(厦门)内训圆满成功 2017年9月12日-15日,CDA数据分析师在中科院城市环境研究所(厦门)进行了 ...
2024-11-07数据分析是现代商业和研究领域不可或缺的重要工具。无论是为了提高业务决策的准确性,还是为了发掘隐藏在数据中的潜在价值,了解 ...
2024-11-06数据分析是一个精细且有序的过程,旨在从海量数据中提取有用的信息,为决策提供有力支持。无论你是新手还是有经验的分析师,理解 ...
2024-11-06在当今竞争激烈的商业环境中,业务分析师(Business Analyst, BA)的角色变得愈加重要。随着企业对数据驱动决策的依赖加深,业务 ...
2024-11-06