
俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选合适的图、选合适的工具画图(例如能交互的图就比静态图更吸引人)。
图形的选择可以参考CDA数据分析师认证一级教材中关于图表与分析场景的对应关系来选择合适的图。
本文主要给大家分享一款绘图工具,可以绘制能交互的图形,这个工具就是PyEcharts
PyEcharts为啥画的一手好图?因为他有个“好爸爸”-Echarts。Echarts是百度开源的,目前托管在Apache软件基金会。它底层由JavaScripts实现,可以流畅的运行在 PC 和移动设备上,兼容当前绝大部分浏览器。ECharts 提供了常规的折线图、柱状图、散点图、饼图、K线图,用于统计的盒形图,用于地理数据可视化的地图、热力图、线图,用于关系数据可视化的关系图、treemap、旭日图,多维数据可视化的平行坐标,还有用于 BI 的漏斗图,仪表盘,并且支持图与图之间的混搭。
Echarts虽有千般好,but JavaScripts这个前端语言对于大部分数据分析师而言是一个屏障,所以有几位大佬开发出PyEcharts,这其实是通过Python语言对Echarts做了封装,会Python的数据分析师便能快速上手使用Echarts了。
PyEcharts版本迭代比较快,差异较大的是0.5.x 与新的 1.x 、2.x版本之间差异较大。并且官方也不再持续对0.5.x系列更新迭代了,所以本文采用的是1.x、2.x的写法演示如何应用PyEcharts进行绘图。
导入要绘制的图形对象的构造函数,常见的图表几乎都在charts里面了。
from pyecharts.charts import Bar
# 这里导入的是柱形图Bar,还可以是Line折线图、Pie饼图等
使用构造函数初始化图形对象
bar = Bar()
接下来添加x轴的数据
bar.add_xaxis(["2021","2022","2023","2024","2025"])
添加y轴数据,第一个参数是系列名称(例如一张图可以绘制多组柱状图,一个系列就是一个组)
bar.add_yaxis("A组销售额",y_axis=[1000,3000,2500,4000,3900])
bar.add_yaxis("B组销售额",y_axis=[2000,3500,3500,3000,3500])
最后通过render或者render_notebook函数将图形绘制出来。
bar.render_notebook()
# 适合在jupyter notebook环境下直接在cell下面显示。
如果使用的是render可以将图形渲染到html(网页文件)中去,可以传入指定的文件名。
bar.render("历年销售数据.html")
上面的代码生成了历史销售数据.html这个网页文件了。
双击打开就可以在浏览器看到图形了。
简单的绘图上面的操作就够了,如果想让图形更炫酷,则需要更多的代码雕琢。如何在PyEcharts里面实现其他额外的功能呢,通过配置项即可。PyEcharts里有一句话叫“一切皆配置”,就是任何需求都由配置来实现。
所有的配置类型都在options模块下,约定俗成的导入方式如下:
import pyecharts.options as opts
接下来初始化柱状图对象时为其做初始化配置(init_opts),在初始化配置中设置一套PyEcharts自带的主题。
from pyecharts.globals import ThemeType
bar2 = Bar(init_opts=opts.InitOpts(theme=ThemeType.SHINE))
后续代码一样,添加数据,渲染致jupyter notebook。
bar2.add_xaxis(["2021","2022","2023","2024","2025"])
bar2.add_yaxis("A组销售额",y_axis=[1000,3000,2500,4000,3900])
bar2.add_yaxis("B组销售额",y_axis=[2000,3500,3500,3000,3500])
bar2.render_notebook()
看起来与之前的图还是有很大区别的,例如配色。PyEcharts还有很多主题可以有不同的视觉效果。
bar3 = Bar(init_opts=opts.InitOpts(theme=ThemeType.DARK))
以上就是PyEcharts的基本用法,如果你学会了绘制常见的一些图形完全没有问题。更多的细节用法可以关注PyEcharts官方文档或者我们的系列文章。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。
CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23