俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选合适的图、选合适的工具画图(例如能交互的图就比静态图更吸引人)。
图形的选择可以参考CDA数据分析师认证一级教材中关于图表与分析场景的对应关系来选择合适的图。
本文主要给大家分享一款绘图工具,可以绘制能交互的图形,这个工具就是PyEcharts
PyEcharts为啥画的一手好图?因为他有个“好爸爸”-Echarts。Echarts是百度开源的,目前托管在Apache软件基金会。它底层由JavaScripts实现,可以流畅的运行在 PC 和移动设备上,兼容当前绝大部分浏览器。ECharts 提供了常规的折线图、柱状图、散点图、饼图、K线图,用于统计的盒形图,用于地理数据可视化的地图、热力图、线图,用于关系数据可视化的关系图、treemap、旭日图,多维数据可视化的平行坐标,还有用于 BI 的漏斗图,仪表盘,并且支持图与图之间的混搭。
Echarts虽有千般好,but JavaScripts这个前端语言对于大部分数据分析师而言是一个屏障,所以有几位大佬开发出PyEcharts,这其实是通过Python语言对Echarts做了封装,会Python的数据分析师便能快速上手使用Echarts了。
PyEcharts版本迭代比较快,差异较大的是0.5.x 与新的 1.x 、2.x版本之间差异较大。并且官方也不再持续对0.5.x系列更新迭代了,所以本文采用的是1.x、2.x的写法演示如何应用PyEcharts进行绘图。
导入要绘制的图形对象的构造函数,常见的图表几乎都在charts里面了。
from pyecharts.charts import Bar
# 这里导入的是柱形图Bar,还可以是Line折线图、Pie饼图等
使用构造函数初始化图形对象
bar = Bar()
接下来添加x轴的数据
bar.add_xaxis(["2021","2022","2023","2024","2025"])
添加y轴数据,第一个参数是系列名称(例如一张图可以绘制多组柱状图,一个系列就是一个组)
bar.add_yaxis("A组销售额",y_axis=[1000,3000,2500,4000,3900])
bar.add_yaxis("B组销售额",y_axis=[2000,3500,3500,3000,3500])
最后通过render或者render_notebook函数将图形绘制出来。
bar.render_notebook()
# 适合在jupyter notebook环境下直接在cell下面显示。
如果使用的是render可以将图形渲染到html(网页文件)中去,可以传入指定的文件名。
bar.render("历年销售数据.html")
上面的代码生成了历史销售数据.html这个网页文件了。
双击打开就可以在浏览器看到图形了。
简单的绘图上面的操作就够了,如果想让图形更炫酷,则需要更多的代码雕琢。如何在PyEcharts里面实现其他额外的功能呢,通过配置项即可。PyEcharts里有一句话叫“一切皆配置”,就是任何需求都由配置来实现。
所有的配置类型都在options模块下,约定俗成的导入方式如下:
import pyecharts.options as opts
接下来初始化柱状图对象时为其做初始化配置(init_opts),在初始化配置中设置一套PyEcharts自带的主题。
from pyecharts.globals import ThemeType
bar2 = Bar(init_opts=opts.InitOpts(theme=ThemeType.SHINE))
后续代码一样,添加数据,渲染致jupyter notebook。
bar2.add_xaxis(["2021","2022","2023","2024","2025"])
bar2.add_yaxis("A组销售额",y_axis=[1000,3000,2500,4000,3900])
bar2.add_yaxis("B组销售额",y_axis=[2000,3500,3500,3000,3500])
bar2.render_notebook()
看起来与之前的图还是有很大区别的,例如配色。PyEcharts还有很多主题可以有不同的视觉效果。
bar3 = Bar(init_opts=opts.InitOpts(theme=ThemeType.DARK))
以上就是PyEcharts的基本用法,如果你学会了绘制常见的一些图形完全没有问题。更多的细节用法可以关注PyEcharts官方文档或者我们的系列文章。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。
CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19