一、线性可分支持向量机的概念
线性可分支持向量机是用于求解线性可分问题的分类问题。对于给定的线性可分训练数据集,通过间隔最大化构造相应的凸二次优化问题可以得到分离超平面:
以及相应的分类决策函数
称为线性可分支持向量机。
二、线性可分支持向量机的原理
1、原始问题
支持向量机学习的基本想法是求解能够正确划分训练数据集并且几何间隔最大的分离超平面,这里的间隔最大化又称为硬间隔最大化。
我们可以把这样的问题抽象称为如下的数学表达式:
然而,函数间隔的取值并不影响最优化问题的解,我们可以取。则上述的优化问题就可以转化为:
可以将上述的最大化问题转化为最小化问题:
这样的问题是一个凸二次规划的问题。在线性可分情况下,训练数据集的样本点中的分离超平面距离最近的样本点的事例称为支持向量,即满足:
2、对偶算法
对于上述的带约束的优化问题,我们可以引进拉格朗日函数来解决:
这样,原始的问题就转化成一个极小极大问题:
再通过拉格朗日函数的对偶性,将上述的极小极大问题转换成一个极大极小问题:
此时,我们先求:
将拉格朗日函数分别对和求偏导,并令其为0,则为
可得:
将上面两个等式带入拉格朗日函数,得
再求对a的极大,即:
将这样的最大化问题转化为最小化问题,即为
根据拉格朗日对偶性,通过对偶函数的最优解即可以求出原始函数的最优解:
其中,下标是使得的样本。这里使得的样本也称为支撑向量,与上述的满足的样本本质上是一样的。
三、线性可分支持向量机的步骤
1、构造带约束的优化问题:
2、计算原始问题的最优解:
3、求分离超平面:
分类决策平面:
四、实验的仿真
我们通过二次规划来求解上述的带约束的优化问题,对于一个实例:(选自:《统计学习方法》)正例点为,负例点为,图像为:数据分析师培训
(正例点和负例点)
MATLAB代码
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 基于凸二次规划的线性可分支持向量机
% 清空内存
clear all;
clc;
%简单的测试数据集
X = [3,3;4,3;1,1];
x_1 = X(:,1);
x_2 = X(:,2);
Y = [1,1,-1];%标签
m = size(X);
for i = 1:m(1,1)
X(i,:) = X(i,:)*Y(1,i);
end
%% 对偶问题,用二次规划来求解
H = X*X';
f = [-1;-1;-1];
A = Y;
b = 0;
lb = zeros(3,1);
% 调用二次规划的函数
[x,fval,exitflag,output,lambda] = quadprog(H,f,[],[],A,b,lb);
% 求原问题的解
n = size(x);
w = x' * X;
for i = 1:n(1,1)
if x(i,1) > 0
b = Y(1,i)-w*X(i,:)'*Y(1,i);
break;
end
end
% 求出分离超平面
y_1 = [0,4];
for i = 1:2
y_2(1,i) = (-b-w(1,1)*y_1(1,i))./w(1,2);
end
hold on
plot(y_1,y_2);
for i = 1:3
if Y(1,i) == 1
plot(x_1(i,:),x_2(i,:),'+r');
elseif Y(1,i) == -1
plot(x_1(i,:),x_2(i,:),'og');
end
end
axis([0,7,0,7])
hold off
分类的结果:
(最终的分类超平面)
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21