
简单易学的机器学习算法—分类回归树CART
分类回归树(Classification and Regression Tree,CART)是一种典型的决策树算法,CART算法不仅可以应用于分类问题,而且可以用于回归问题。
一、树回归的概念
对于一般的线性回归,其拟合的模型是基于全部的数据集。这种全局的数据建模对于一些复杂的数据来说,其建模的难度也会很大。其后,我们有了局部加权线性回归,其只利用数据点周围的局部数据进行建模,这样就简化了建模的难度,提高了模型的准确性。树回归也是一种局部建模的方法,其通过构建决策点将数据切分,在切分后的局部数据集上做回归操作。
在博文“简单易学的机器学习算法——决策树之ID3算法”中介绍了ID3算法的思想,ID3算法主要是用来处理离散性的问题,然而对于连续型的问题,ID3算法就无能无力了。其次ID3算法的分支也属于多分支,即通过一个特征可以分出很多的子数据集。分类回归树(Classification and Regression Tree, CART)是一种树构建算法,这种算法既可以处理离散型的问题,也可以处理连续型的问题。在处理连续型问题时,主要通过使用二元切分来处理连续型变量,即特征值大于某个给定的值就走左子树,或者就走右子树。
二、回归树的分类
在构建回归树时,主要有两种不同的树:
回归树(Regression Tree),其每个叶节点是单个值
模型树(Model Tree),其每个叶节点是一个线性方程
三、基于CART算法的回归树
在进行树的左右子树划分时,有一个很重要的量,即给定的值,特征值大于这个给定的值的属于一个子树,小于这个给定的值的属于另一个子树。这个给定的值的选取的原则是使得划分后的子树中的“混乱程度”降低。如何定义这个混乱程度是设计CART算法的一个关键的地方。在ID3算法中我们使用的信息熵和信息增益的概念。信息熵就代表了数据集的紊乱程度。对于连续型的问题,我们可以使用方差的概念来表达混乱程度,方差越大,越紊乱。所以我们要找到使得切分之后的方差最小的划分方式。数据分析师培训
四、实验仿真
对于数据集1,数据集2,我们分别使用CART算法构建回归树
(数据集1)
(数据集2)
从图上我们可以看出可以将数据集划分成两个子树,即左右子树,并分别在左右子树上做线性回归。同样的道理,下图可以划分为5个子树。
结果为:
(数据集1的结果)
(数据集2的结果)
MATLAB代码:
主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% CART
clear all
clc
% 导入数据集
%dataSet = load('ex00.txt');
dataSet = load('ex0.txt');
% 画图1
% plot(dataSet(:,1),dataSet(:,2),'.');
% axis([-0.2,1.2,-1.0,2.0]);
% 画图2
% plot(dataSet(:,2),dataSet(:,3),'.');
% axis([-0.2,1.2,-1.0,5.0]);
createTree(dataSet,1,4);
构建子树
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ retTree ] = createTree( dataSet,tolS,tolN )
[feat,val] = chooseBestSplit(dataSet, tolS, tolN);
disp(['feat:', num2str(feat)]);
disp(['value:', num2str(val)]);
if feat == 0
return;
end
[lSet,rSet] = binSplitDataSet(dataSet, feat, val);
disp('left:');
createTree( lSet,tolS,tolN );
disp('right:');
createTree( rSet,tolS,tolN );
end
最佳划分
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ Index, Value ] = chooseBestSplit( dataSet, tolS, tolN )
% 参数中tolS是容许的误差下降值,tolN是切分的最小样本数
m = size(dataSet);%数据集的大小
if length(unique(dataSet(:,m(:,2)))) == 1%仅剩下一种时
Index = 0;
Value = regLeaf(dataSet(:,m(:,2)));
return;
end
S = regErr(dataSet);%误差
bestS = inf;%初始化,无穷大
bestIndex = 0;
bestValue = 0;
%找到最佳的位置和最优的值
for j = 1:(m(:,2)-1)%得到列
b = unique(dataSet(:,j));%得到特征所在的列
lenCharacter = length(b);
for i = 1:lenCharacter
temp = b(i,:);
[mat0,mat1] = binSplitDataSet(dataSet, j ,temp);
m0 = size(mat0);
m1 = size(mat1);
if m0(:,1) < tolN || m1(:,1) < tolN
continue;
end
newS = regErr(mat0) + regErr(mat1);
if newS < bestS
bestS = newS;
bestIndex = j;
bestValue = temp;
end
end
end
if (S-bestS) < tolS
Index = 0;
Value = regLeaf(dataSet(:,m(:,2)));
return;
end
%划分
[mat0, mat1] = binSplitDataSet(dataSet, bestIndex ,bestValue);
m0 = size(mat0);
m1 = size(mat1);
if m0(:,1) < tolN || m1(:,1) < tolN
Index = 0;
Value = regLeaf(dataSet(:,m(:,2)));
return;
end
Index = bestIndex;
Value = bestValue;
end
划分
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 将数据集划分为两个部分
function [ dataSet_1, dataSet_2 ] = binSplitDataSet( dataSet, feature, value )
[m,n] = size(dataSet);%计算数据集的大小
DataTemp = dataSet(:,feature)';%变成行
%计算行中标签列的元素大于value的行
index_1 = [];%空的矩阵
index_2 = [];
for i = 1:m
if DataTemp(1,i) > value
index_1 = [index_1,i];
else
index_2 = [index_2,i];
end
end
[m_1,n_1] = size(index_1);%这里要取列数
[m_2,n_2] = size(index_2);
if n_1>0 && n_2>0
for j = 1:n_1
dataSet_1(j,:) = dataSet(index_1(1,j),:);
end
for j = 1:n_2
dataSet_2(j,:) = dataSet(index_2(1,j),:);
end
elseif n_1 == 0
dataSet_1 = [];
dataSet_2 = dataSet;
elseif n_2 == 0
dataSet_2 = [];
dataSet_1 = dataSet;
end
end
%% 将数据集划分为两个部分
function [ dataSet_1, dataSet_2 ] = binSplitDataSet( dataSet, feature, value )
[m,n] = size(dataSet);%计算数据集的大小
DataTemp = dataSet(:,feature)';%变成行
%计算行中标签列的元素大于value的行
index_1 = [];%空的矩阵
index_2 = [];
for i = 1:m
if DataTemp(1,i) > value
index_1 = [index_1,i];
else
index_2 = [index_2,i];
end
end
[m_1,n_1] = size(index_1);%这里要取列数
[m_2,n_2] = size(index_2);
if n_1>0 && n_2>0
for j = 1:n_1
dataSet_1(j,:) = dataSet(index_1(1,j),:);
end
for j = 1:n_2
dataSet_2(j,:) = dataSet(index_2(1,j),:);
end
elseif n_1 == 0
dataSet_1 = [];
dataSet_2 = dataSet;
elseif n_2 == 0
dataSet_2 = [];
dataSet_1 = dataSet;
end
end
偏差
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ error ] = regErr( dataSet )
m = size(dataSet);%求得dataSet的大小
dataVar = var(dataSet(:,m(:,2)));
error = dataVar * (m(:,1)-1);
end
叶节点
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ leaf ] = regLeaf( dataSet )
m = size(dataSet);
leaf = mean(dataSet(:,m(:,2)));
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10