一、决策树分类算法概述
决策树算法是从数据的属性(或者特征)出发,以属性作为基础,划分不同的类。例如对于如下数据集
(数据集)
其中,第一列和第二列为属性(特征),最后一列为类别标签,1表示是,0表示否。决策树算法的思想是基于属性对数据分类,对于以上的数据我们可以得到以下的决策树模型
(决策树模型)
先是根据第一个属性将一部份数据区分开,再根据第二个属性将剩余的区分开。
实现决策树的算法有很多种,有ID3、C4.5和CART等算法。下面我们介绍ID3算法。
二、ID3算法的概述
ID3算法是由Quinlan首先提出的,该算法是以信息论为基础,以信息熵和信息增益为衡量标准,从而实现对数据的归纳分类。
首先,ID3算法需要解决的问题是如何选择特征作为划分数据集的标准。在ID3算法中,选择信息增益最大的属性作为当前的特征对数据集分类。信息增益的概念将在下面介绍,通过不断的选择特征对数据集不断划分;
其次,ID3算法需要解决的问题是如何判断划分的结束。分为两种情况,第一种为划分出来的类属于同一个类,如上图中的最左端的“非鱼类”,即为数据集中的第5行和第6行数据;最右边的“鱼类”,即为数据集中的第2行和第3行数据。第二种为已经没有属性可供再分了。此时就结束了。
通过迭代的方式,我们就可以得到这样的决策树模型。
(ID3算法基本流程)
三、划分数据的依据
ID3算法是以信息熵和信息增益作为衡量标准的分类算法。
1、信息熵(Entropy)
熵的概念主要是指信息的混乱程度,变量的不确定性越大,熵的值也就越大,熵的公式可以表示为:
其中为类别在样本s中出现的概率。
2、信息增益(Information gain)
信息增益指的是划分前后熵的变化,可以用下面的公式表示:
其中,a表示样本的属性,是属性所有的取值集合。v是a的其中一个属性值,sv是s中a的值为v的样例集合。
四、实验仿真
1、数据预处理
我们以下面的数据为例,来实现ID3算法:
我们首先需要对数据处理,例如age属性,我们用0表示youth,1表示middle_aged,2表示senior等等。
(将表格数据化)
2、实验结果
(原始的数据)
(划分1)
(划分2)
(划分3)
(最终的决策树)
MATLAB代码
主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% Decision Tree
% ID3
%导入数据
%data = [1,1,1;1,1,1;1,0,0;0,1,0;0,1,0];
data = [0,2,0,0,0;
0,2,0,1,0;
1,2,0,0,1;
2,1,0,0,1;
2,0,1,0,1;
2,0,1,1,0;
1,0,1,1,1;
0,1,0,0,0;
0,0,1,0,1;
2,1,1,0,1;
0,1,1,1,1;
1,1,0,1,1;
1,2,1,0,1;
2,1,0,1,0];
% 生成决策树
createTree(data);
生成决策树
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ output_args ] = createTree( data )
[m,n] = size(data);
disp('original data:');
disp(data);
classList = data(:,n);
classOne = 1;%记录第一个类的个数
for i = 2:m
if classList(i,:) == classList(1,:)
classOne = classOne+1;
end
end
% 类别全相同
if classOne == m
disp('final data: ');
disp(data);
return;
end
% 特征全部用完
if n == 1
disp('final data: ');
disp(data);
return;
end
bestFeat = chooseBestFeature(data);
disp(['bestFeat: ', num2str(bestFeat)]);
featValues = unique(data(:,bestFeat));
numOfFeatValue = length(featValues);
for i = 1:numOfFeatValue
createTree(splitData(data, bestFeat, featValues(i,:)));
disp('-------------------------');
end
end
选择信息增益最大的特征
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 选择信息增益最大的特征
function [ bestFeature ] = chooseBestFeature( data )
[m,n] = size(data);% 得到数据集的大小
% 统计特征的个数
numOfFeatures = n-1;%最后一列是类别
% 原始的熵
baseEntropy = calEntropy(data);
bestInfoGain = 0;%初始化信息增益
bestFeature = 0;% 初始化最佳的特征位
% 挑选最佳的特征位
for j = 1:numOfFeatures
featureTemp = unique(data(:,j));
numF = length(featureTemp);%属性的个数
newEntropy = 0;%划分之后的熵
for i = 1:numF
subSet = splitData(data, j, featureTemp(i,:));
[m_1, n_1] = size(subSet);
prob = m_1./m;
newEntropy = newEntropy + prob * calEntropy(subSet);
end
%计算增益
infoGain = baseEntropy - newEntropy;
if infoGain > bestInfoGain
bestInfoGain = infoGain;
bestFeature = j;
end
end
end
计算熵
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ entropy ] = calEntropy( data )
[m,n] = size(data);
% 得到类别的项
label = data(:,n);
% 处理完的label
label_deal = unique(label);
numLabel = length(label_deal);
prob = zeros(numLabel,2);
% 统计标签
for i = 1:numLabel
prob(i,1) = label_deal(i,:);
for j = 1:m
if label(j,:) == label_deal(i,:)
prob(i,2) = prob(i,2)+1;
end
end
end
% 计算熵
prob(:,2) = prob(:,2)./m;
entropy = 0;
for i = 1:numLabel
entropy = entropy - prob(i,2) * log2(prob(i,2));
end
end
划分数据
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ subSet ] = splitData( data, axis, value )
[m,n] = size(data);%得到待划分数据的大小
subSet = data;
subSet(:,axis) = [];
k = 0;
for i = 1:m
if data(i,axis) ~= value
subSet(i-k,:) = [];
k = k+1;
end
end
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-04在现代商业环境中,数据分析师的角色愈发重要。数据分析师通过解读数据,帮助企业做出更明智的决策。因此,考取数据分析师证书成为了许多人提升职业竞争力的选择。本文将详细介绍考取数据分析师证书的过程,包括了解证书种类和 ...
2025-03-03在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2025-03-03