
简单易学的机器学习算法—Logistic回归
一、Logistic回归的概述
Logistic回归是一种简单的分类算法,提到“回归”,很多人可能觉得与分类没什么关系,Logistic回归通过对数据分类边界的拟合来实现分类。而“回归”也就意味着最佳拟合。要进行最佳拟合,则需要寻找到最佳的拟合参数,一些最优化方法就可以用于最佳回归系数的确定。
二、最优化方法确定最佳回归系数
最优化方法有基于梯度的梯度下降法、梯度上升发,改进的随机梯度下降法等等。基于梯度的优化方法在求解问题时,本身对要求解的问题有要求:即问题本身必须是可导的。其次,基于梯度的方法会使得待优化问题陷入局部最优。此时,一些启发式优化方法可以很好的解决这样的问题,但是启发式算法的求解速度较慢,占用内存较大。
对于确定回归系数这样的问题
不存在多峰,也就是说不存在除最优值之外的局部最优值。其次,这样的问题是可求导的,所以基于梯度的方法是可以用来求解回归系数的问题的。优化算法见optimal algorithm类别。
三、Sigmoid函数
当分类边界的函数被表示出来后,可以使用一种被称为海维塞德阶跃函数(Heaviside step function)来处理,简称为单位阶跃函数。其中Sigmoid函数是其中使用较多的一种阶跃函数。Sigmoid函数如下图:
Sigmoid函数的公式为:
当z为0时,函数值为0.5;
四、实验(MATLAB程序)
1、梯度上升法
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%%gradient method
function weights = gradient(x, y)
alpha = 0.001;%Step
maxCycle = 500;
[m,n] = size(x);
weights = ones(n,1);
for i = 1 : maxCycle
h = sigmoid(x * weights);
error = y - h;
weights = weights + alpha * x' * error;%注意点1
end
end
2、Sigmoid
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% sigmoid function
function out = sigmoid(x)
out = 1./(1+exp(-x));
end
3、主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%----start-----
data = load('testSet.txt');%导入数据
[m,n] = size(data);%行和列
o = ones(m,1);
dataX = data(:,1:2);
X = [o,dataX];
Y = data(:,3);
%--experiments--
weights = gradient(X,Y);
%% plot the pic
Ypic = X * weights;
x_1 = X(:,2);
x_2 = X(:,3);
hold on
for i = 1 : 100
if Y(i,:) == 0
plot(x_1(i,:),x_2(i,:),'.g');
else
plot(x_1(i,:),x_2(i,:),'.r');
end
end
x = -3.0:0.1:3;
y = (-weights(1)-weights(2)*x)/weights(3);%注意点2
plot(x,y);
4、测试的数据以及最终的分类
五、注意点
在程序的实现过程中有两个注意点,分别用注释标出,第一处在梯度上升法中的求权重weights的公式;第二处是主程序中的注释标出。
1、先说说第一处:
令,则
。可知
,假设有m个样本,且样本之间相互独立。则似然函数为
。
取对数。对其中一个样本而言求偏导:
。要求极大似然估计,故要使用梯度上升法求最大值:
。数据分析师培训
2、再说说第二处:
要画出拟合直线,横坐标为x_1,纵坐标为x_2,直线的方程为,求出x_1和x_2的对应关系即可。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10