京公网安备 11010802034615号
经营许可证编号:京B2-20210330
简单易学的机器学习算法—K-Means算法
一、聚类算法的简介
聚类算法是一种典型的无监督学习算法,主要用于将相似的样本自动归到一个类别中。聚类算法与分类算法最大的区别是:聚类算法是无监督的学习算法,而分类算法属于监督的学习算法。
在聚类算法中根据样本之间的相似性,将样本划分到不同的类别中,对于不同的相似度计算方法,会得到不同的聚类结果,常用的相似度计算方法有欧式距离法。
二、K-Means算法的概述
基本K-Means算法的思想很简单,事先确定常数K,常数K意味着最终的聚类类别数,首先随机选定初始点为质心,并通过计算每一个样本与质心之间的相似度(这里为欧式距离),将样本点归到最相似的类中,接着,重新计算每个类的质心(即为类中心),重复这样的过程,知道质心不再改变,最终就确定了每个样本所属的类别以及每个类的质心。由于每次都要计算所有的样本与每一个质心之间的相似度,故在大规模的数据集上,K-Means算法的收敛速度比较慢。
三、K-Means算法的流程
初始化常数K,随机选取初始点为质心
重复计算一下过程,直到质心不再改变
计算样本与每个质心之间的相似度,将样本归类到最相似的类中
重新计算质心
输出最终的质心以及每个类
四、K-Means算法的实现
对数据集进行测试

原始数据集
MATLAB代码
主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% input the data
A = load('testSet.txt');
%% 计算质心
centroids = kMeans(A, 4);
随机选取质心
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 取得随机中心
function [ centroids ] = randCent( dataSet, k )
[m,n] = size(dataSet);%取得列数
centroids = zeros(k, n);
for j = 1:n
minJ = min(dataSet(:,j));
rangeJ = max(dataSet(:,j))-min(dataSet(:,j));
centroids(:,j) = minJ+rand(k,1)*rangeJ;%产生区间上的随机数
end
end
计算相似性
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ dist ] = distence( vecA, vecB )
dist = (vecA-vecB)*(vecA-vecB)';%这里取欧式距离的平方
end
kMeans的主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% kMeans的核心程序,不断迭代求解聚类中心
function [ centroids ] = kMeans( dataSet, k )
[m,n] = size(dataSet);
%初始化聚类中心
centroids = randCent(dataSet, k);
subCenter = zeros(m,2);%做一个m*2的矩阵,第一列存储类别,第二列存储距离
change = 1;%判断是否改变
while change == 1
change = 0;
%对每一组数据计算距离
for i = 1:m
minDist = inf;
minIndex = 0;
for j = 1:k
dist= distence(dataSet(i,:), centroids(j,:));
if dist < minDist
minDist = dist;
minIndex = j;
end
end
if subCenter(i,1) ~= minIndex
change = 1;
subCenter(i,:)=[minIndex, minDist];
end
end
%对k类重新就算聚类中心
for j = 1:k
sum = zeros(1,n);
r = 0;%数量
for i = 1:m
if subCenter(i,1) == j
sum = sum + dataSet(i,:);
r = r+1;
end
end
centroids(j,:) = sum./r;
end
end
%% 完成作图
hold on
for i = 1:m
switch subCenter(i,1)
case 1
plot(dataSet(i,1), dataSet(i,2), '.b');
case 2
plot(dataSet(i,1), dataSet(i,2), '.g');
case 3
plot(dataSet(i,1), dataSet(i,2), '.r');
otherwise
plot(dataSet(i,1), dataSet(i,2), '.c');
end
end
plot(centroids(:,1),centroids(:,2),'+k');
end

最终的聚类结果
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29