
《数学之美》拾遗—TF-IDF
在学习机器学习的过程中,我写了简单易学的机器学习算法的专题,依然还有很多的算法会陆续写出来。网上已经有很多人分享过类似的材料,我只是通过自己的理解,想尽可能用一种通俗易懂的方式讲出来。在不断学习的过程中,陆陆续续补充了很多的知识点,在学习吴军老师的《数学之美》的过程中,也补充了很多我之前遗漏的知识点,吴军老师已经在《数学之美》上把问题讲得很清楚,我在这里只是再增加一些我对这些问题的认识。专题的顺序与原书不一致,其中的原因是我在学习机器学习的过程中遇到了问题会翻阅一些书,所以,顺序与我学习时遇到的问题是相关的。借此机会,感谢那些默默支持我的人,我会更加努力写出高质量的博文。
一、什么是TF-IDF
首先解释下TF-IDF的全称,TF-IDF全称是Term Frequency / Inverse Document Frequency,全称的意思为词频、逆文本频率。
在我们处理文本时,例如,对于一篇文章,文章是由很多的词组成,通过与我们的词库对比,我们可以很容易的过滤掉一些公认的停止词(Stop Word),只保留一些关键词。停止词是指对文章的主题没有任何帮助却在文章中大量出现的一些词,如“的”、“是”等。剩下的关键词也并不是都是同等重要的,我们要确定关键词在文章中的权重,这样我们才能确定文章的主题,此时,我们就可以使用TF-IDF来计算各个关键词的权重。
TF是指一个词在一篇文章中出现的频率。单纯使用TF将会出现一些问题,问题是一些通用的词对于主题并没有太大的作用,反倒是一些出现频率较少的词才能够表达文章的主题。所以权重的设计必须满足:一个词预测主题的能力越强,权重越大,反之,权重越小。所有统计的文章中,一些词只是在其中很少几篇文章中出现,那么这样的词对文章的主题的作用很大,这些词的权重应该设计的较大。IDF就是在完成这样的工作,如果一个关键词W在篇文章中出现,那么
越大,关键词W的权重反倒是越小。最后我们将TF的值和IDF的值综合考虑,便能得到关键词的权重:
。
二、如何计算TF-IDF值
对于一个处理好的词项-文档矩阵:
文章有:d1,d2,d3,d4,d5和d6,关键词有:“ship”,“boat”,“ocean”,“wood”和“tree”。矩阵中的数字表示词在对应文章中出现的次数。
1、TF的计算
TF表示词在一篇文章中出现的频率。这里我们假设每篇文章的词的个数为,。则词“ship”在文章d1中的TF值为:
。其他的可以依次类比。
2、IDF的计算
IDF的公式为:
其中,D表示全部的文章数,表示关键词w出现的文章数。如关键词“ship”在文章d1和d3中出现,则
,而全部的文章数
。则
。
3、TF-IDF的值
TF-IDF的值即为最终的权重,是将TF值与IDF值相乘,则对于关键词“ship”的TF-IDF值为:
三、实际的例子
选择了9个标题:(参考文献2)
The Neatest Little Guide to Stock Market Investing
Investing For Dummies, 4th Edition
The Little Book of Common Sense Investing: The Only Way to Guarantee Your Fair Share of Stock Market Returns
The Little Book of Value Investing
Value Investing: From Graham to Buffett and Beyond
Rich Dad's Guide to Investing: What the Rich Invest in, That the Poor and the Middle Class Do Not!
Investing in Real Estate, 5th Edition
Stock Investing For Dummies
Rich Dad's Advisors: The ABC's of Real Estate Investing: The Secrets of Finding Hidden Profits Most Investors Miss
去掉了停止词“and”,“edition”,“for”,“in”,“little”,“of”“the”,“to”。我们可以得到以下的词项-文档矩阵:
最终的结果为:
MATLAB源码
TF_IDF函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ dataMade ] = TFIDF( dataSet )
[m,n] = size(dataSet);%计算dataSet的大小,m为词的个数,n为标题的个数
%rowSum = sum(dataSet);% 每个标题中关键词的总和
rowSum = [8,6,19,6,8,19,6,4,18];
colSum = sum(dataSet,2);% 每个词在不同标题中出现的总和
dataMade = zeros(m,n);% 构造一个一样大小的矩阵,用于存储TF-IDF值
for i = 1:m
TempIDF = log2(n./colSum(i,:));
for j = 1:n
dataMade(i,j) = (dataSet(i,j)./rowSum(:,j))*TempIDF;
end
end
end
主函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% TF_IDF
% load data
% 注意每一列为标题,每一行为词
dataSet = [0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 1
0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 1
1 0 0 0 0 1 0 0 0
1 1 1 1 1 1 1 1 1
1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 2 0 0 1
1 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0
];
% 计算TF-IDF值
data = TFIDF(dataSet);
注意点:在参考文献2中有两个问题:数据分析师培训
1、在求解TF时,TF的分母应该是整个文本的长度,可参见维基百科。
2、在求解IDF时,取对数的时应该是以2为底,而不是以为底。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03