企业如何开启大数据决策之路
站在信息化角度来看,成长的企业讲究发展、固化,成数据的企业讲究创新、智能。而如今身处大数据时代,诸多企业也逐渐意识到人力的决策和管理越发跟不上,开始寻求数据利用的有效手段。
以这样一家企业为例,信息化发展了有十余年,从萌芽到成长、由成熟到创新,走过了多数企业正在走的路,也集成了多数企业可效仿的信息化建设和数据化决策管理经验。
信息化发展之路
该企业的业务形态非常全面,囊括原料板块、制剂板块、零售板块以及工程制造贸易板块。信息化建设经历了小型机时代、ERP时代、大数据时代以及未来的智能工业时代,每一步发展都配合着企业管理升级的需求。
在起步阶段,公司对首先要求改变企业管理理念,需要从业务最核心的财务口径起步,向财务数据的及时性、合规性提出要求。让财务核算尽快摆脱手工记账的时代,提高效率,同时落实新会计制度在操作层面的和规划处理。减轻财务人员原来手工记账的复杂劳作,让财务核算更精细化。
随着公司对业务管控要求的提升,公司提出企业管控模式以财务管控为核心的基础上,要求ERP平台可以将业务数据的流转过程和业务风险进行管控。通过内控体系,将业务风险由事后管控,前沿到事中管控和事前管控;通过全面预算体系将商业计划和业务数据在平台上进行对接,每月进行差异分析,及时纠偏,确保商业计划达成。
面对市场竞争和企业快速成长的双重压力,原来矩阵管理模式已经不适合。为了适应事业快速扩张,多组织的灵活考核调整,在保持现有体系的前提下,将矩阵式管理向蜂窝式管理进化,实现快速柔性的组织调整,支撑企业成长和多变化的管理模式,同时集团管控由财务管控范围向全业务范围进行推进,使得集团整体价值持续最大化,建立以资本利润率为核心的财务指标体系,评价经营者的业绩;适度分权,保证子公司的经营动力及灵活性。
至此,财务模块算是优先完成了整改和创新。但数据的延伸是巨大的,发展至今公司在信息化和管理方面仍面临着诸多问题,尤其是数据化方面:
1、企业系统众多,但是数据分析能力差,价值传递不足,领导看不到企业数据价值;
2、移动端数据应用需求强烈,亟需提高企业决策实时性,易用性和智能性;
3、 缺乏统一的数据规划落地能力,集中管控集团数据,实现集团数据一体化管控;
4、大数据时代下如何支持智能制造+精细化管理的课题越发重要。
大数据决策平台建设
面对这些问题,企业急需建立一个大数据分析决策平台,满足跨业务、可视化、可分享互动等要求,包括能够提高整个大数据运行处理能力的平台,来实现整个大数据的整合。
由于该企业整个单体系统的数据相对来说较成熟,包括ERP数据,BPM数据,HR数据,以及单体MES数据,所以在操作环境中,可以把整个研发、采购、生产、销售、人力、财务的主数据都放到一个平台上,建立一个数据仓库和数据挖掘进程,最后达到整个数据的贯通,实现大数据的分析。
大数据决策分析平台
在规划和建设过程中,此平台分为了七个模块用于分析决策。
1、营销/销售模块
销售模块主要是流向管理、终端数据管理以及库存管理。
流向管理这块,由于每个商业公司的流向规则都不统一,所以公司开发了一套数据清洗系统,建立规则库,这样一来大大缩短了流向的处理时间。清洗出来的数据进行目标终端的管理分析,利用帆软的报表系统FineReport搭建了一个数据展示平台(BI),制定一些数据流程,对整个终端数据进行了一个梳理。并且,通过整合市场的运营数据,分析每一个终端的销量情况,设立预警,了解市场的潜力和挖掘空间。
客户等级分析
2、运营模块
在整个BI里,运营最看重的是指标的跟踪、进度的跟踪。在每个生产、销售模块里都有相关指标的跟踪,对于全年,会有一个全年的指标要求。
运营模块涵盖了采购、生产、库存、销售这四大板块的几乎所有数据。目的是扫清数据盲点提高运营效率,监控问题反馈提供数据支持。
生产-销售-库存
3、 工程项目、研发模块
工程项目与研发项目的重点在于研发进度以及研发费用的使用情况。所要做的是工程项目和研发项目整体进度的把握,直观地展示给领导,进展到哪一步?哪一步影响了整个进度?领导通过分析给出一个直观的判断。
4、人力资源模
人力资源考虑的是人员效率和人员成本方面的问题。通过抽取HR系统、ERP系统自己一部分MES系统的数据,制作一个人员成本和效率分析,能够让我们知道比如这个生产车间,生产一线员工的投资回报率是多少。
最终目的是为其他模块提供人员因素的数据支持,通过人与事的展现组合,能够起到有效利用人力资源的目的;另一方面,通过人资本身的数据整合,直观的展现出集团整个年龄结构、学历结构、职能结构和岗位结构,为集团人事组成合理性提供理论支持。
人才分析
5、采购物流模块
采购物流模块的建设有几大突破口:供应商付款周期、采购单趋势、原料库存预警、运输费用。通过建立这四大模块的报表来进行数据渗透. 通过FineReport制作的报表,每张报表都可进行明细的钻取,一张报表就能深度展现数据。
纵观整个集团的大数据运营体系,以数据驱动的方式,明确了整个的战略方向、战略目标。从整个战略开始、运维服务一直到组织架构管控,整个流程制度的管理,每一个BI报表都紧跟人员的绩效,与KPI管理绑定,在BI中建立明晰的考核体系,包括据录入是否及时这些都由人力资源和运营部来考核。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13