简单易学的机器学习算法—Gibbs采样
一、Gibbs采样概述
前面介绍的Metropolis-Hastings采样为从指定分布中进行采样提供了一个统一的框架,但是采样的效率依赖于指定的分布的选择,若是选择的不好,会使得接受率比较低,大量的采样被拒绝,影响到整体的收敛速度。
Gibbs采样是Metropolis-Hastings采样算法的特殊形式,即找到一个已知的分布,使得接受率α=1。这样,每次的采样都会被接受,可以提高MCMC的收敛速度。
二、Gibbs采样算法的流程
在这部分,先直接给出Gibbs采样算法的流程,对于Gibbs采样算法的有效性将在第三部分给出论述,Gibbs采样算法的具体流程如下所述:
初始化时间t=1
设置u=(u1,u2,⋯,uN)的值,并初始化初始状态Θ(t)=u
重复以下的过程:
令t=t+1
对每一维:i=1,2,⋯N
直到t=T
Gibbs采样有一个缺陷,必须知道条件分布。
三、上述过程满足细致平稳条件
为简单起见,我们假设所需采样的分布为一个二元分布f(x,y),假设两个状态为(x1,y1)和(x1,y2)。已知:
所以有:
由此可见,Gibbs采样的过程是满足细致平稳条件的。这里直接取p(y2∣x1)为转移概率,则α=1,可见Gibbs采样算法是Metropolis-Hastings采样的特殊形式。
四、实验
4.1、前提
假设从二项正态分布中进行采样,假设Θ=(θ1,θ2),且:
其中
已知:
4.2、流程
初始化时间t=1
设置u=(u1,u2)的值,并初始化初始状态Θ(t)=u
重复以下的过程:
令t=t+1
对每一维:i=1,2
直到t=T
4.3、实验代码
'''
Date:20160704
@author: zhaozhiyong
'''
import random
import math
import matplotlib.pyplot as plt
def p_ygivenx(x, m1, m2, s1, s2):
return (random.normalvariate(m2 + rho * s2 / s1 * (x - m1), math.sqrt(1 - rho ** 2) * s2))
def p_xgiveny(y, m1, m2, s1, s2):
return (random.normalvariate(m1 + rho * s1 / s2 * (y - m2), math.sqrt(1 - rho ** 2) * s1))
N = 5000
K = 20
x_res = []
y_res = []
m1 = 10
m2 = -5
s1 = 5
s2 = 2
rho = 0.5
y = m2
for i in xrange(N):
for j in xrange(K):
x = p_xgiveny(y, m1, m2, s1, s2)
y = p_ygivenx(x, m1, m2, s1, s2)
x_res.append(x)
y_res.append(y)
num_bins = 50
plt.hist(x_res, num_bins, normed=1, facecolor='green', alpha=0.5)
plt.hist(y_res, num_bins, normed=1, facecolor='red', alpha=0.5)
plt.title('Histogram')数据分析师培训
plt.show()
4.4、实验结果
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21