
简单易学的机器学习算法—集成方法(Ensemble Method)
一、集成学习方法的思想
前面介绍了一系列的算法,每个算法有不同的适用范围,例如有处理线性可分问题的,有处理线性不可分问题。在现实世界的生活中,常常会因为“集体智慧”使得问题被很容易解决,那么问题来了,在机器学习问题中,对于一个复杂的任务来说,能否将很多的机器学习算法组合在一起,这样计算出来的结果会不会比使用单一的算法性能更好?这样的思路就是集成学习方法。
集成学习方法是指组合多个模型,以获得更好的效果,使集成的模型具有更强的泛化能力。对于多个模型,如何组合这些模型,主要有以下几种不同的方法:
在验证数据集上上找到表现最好的模型作为最终的预测模型;
对多个模型的预测结果进行投票或者取平均值;
对多个模型的预测结果做加权平均。
以上的几种思路就对应了集成学习中的几种主要的学习框架。
二、集成学习的主要方法
1、强可学习和弱可学习
在概率近似正确(probably approximately correct, PAC)学习的框架中,一个概念(一个类),如果存在一个多项式的学习算法能够学习它,并且正确率很高,那么就称这个概念是强可学习的。一个概念,如果存在一个多项式的学习算法能够学习它,学习正确率仅比随机猜测略好,那么就称这个概念是弱可学习的。Schapire指出在PAC学习框架下,一个概念是强可学习的充分必要条件是这个概念是弱可学习的。那么对于一个学习问题,若是找到“弱学习算法”,那么可以将弱学习方法变成“强学习算法”。
2、在验证集上找表现最好的模型
这样的方法的思想与决策树的思想类似,在不同的条件下选择满足条件的算法。
3、多个模型投票或者取平均值
在Bagging方法中,让学习算法训练多次,每次的训练集由初始的训练集中随机取出的个训练样本组成,初始的训练样本在某次的训练集中可能出现多次或者根本不出现。最终训练出m个预测函数
,最终的预测函数为h对于分类和回归问题可采用如下的两种方法:
分类问题:采用投票的方法,得票最多的类别为最终的类别
回归问题:采用简单的平均方法
随机森林算法就是基于Bagging思想的学习算法。
4、对多个模型的预测结果做加权平均
在Boosting算法中,初始化时对每个训练样本赋予相等的权重,如,然后用该学习算法对训练集训练G轮,每次训练后,对训练失败的训练样本赋予更大的权重,也就是让学习算法在后续的学习中几种对比较难学的训练样本进行学习,从而得到一个预测函数序列
,其中每个
都有一个权重,预测效果好的预测函数的权重较大。最终的预测函数为H对于分类和回归问题可采用如下的两种方法:数据分析师培训
分类问题:有权重的投票方式
回归问题:加权平均
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03