简单易学的机器学习算法—AdaBoost
一、集成方法(Ensemble Method)
集成方法主要包括Bagging和Boosting两种方法,随机森林算法是基于Bagging思想的机器学习算法,在Bagging方法中,主要通过对训练数据集进行随机采样,以重新组合成不同的数据集,利用弱学习算法对不同的新数据集进行学习,得到一系列的预测结果,对这些预测结果做平均或者投票做出最终的预测。AdaBoost算法和GBDT(Gradient Boost Decision Tree,梯度提升决策树)算法是基于Boosting思想的机器学习算法。在Boosting思想中是通过对样本进行不同的赋值,对错误学习的样本的权重设置的较大,这样,在后续的学习中集中处理难学的样本,最终得到一系列的预测结果,每个预测结果有一个权重,较大的权重表示该预测效果较好,详细的思想可见博文“简单易学的机器学习算法——集成方法(Ensemble Method)”。
二、AdaBoost算法思想
其中,是符号函数。具体过程可见下图所示:
上述为AdaBoost的基本原理,下面给出AdaBoost算法的流程:
AdaBoost算法是一种具有很高精度的分类器,其实AdaBoost算法提供的是一种框架,在这种框架下,我们可以使用不同的弱分类器,通过AdaBoost框架构建出强分类器。下面我们使用单层决策树构建一个分类器处理如下的分类问题:
python] view plain copy
#coding:UTF-8
'''''
Created on 2015年6月15日
@author: zhaozhiyong
'''
from numpy import *
def loadSimpleData():
datMat = mat([[1., 2.1],
[2., 1.1],
[1.3, 1.],
[1., 1.],
[2., 1.]])
classLabels = mat([1.0, 1.0, -1.0, -1.0, 1.0])
return datMat, classLabels
def singleStumpClassipy(dataMat, dim, threshold, thresholdIneq):
classMat = ones((shape(dataMat)[0], 1))
#根据thresholdIneq划分出不同的类,在'-1'和'1'之间切换
if thresholdIneq == 'left':#在threshold左侧的为'-1'
classMat[dataMat[:, dim] <= threshold] = -1.0
else:
classMat[dataMat[:, dim] > threshold] = -1.0
return classMat
def singleStump(dataArr, classLabels, D):
dataMat = mat(dataArr)
labelMat = mat(classLabels).T
m, n = shape(dataMat)
numSteps = 10.0
bestStump = {}
bestClasEst = zeros((m, 1))
minError = inf
for i in xrange(n):#对每一个特征
#取第i列特征的最小值和最大值,以确定步长
rangeMin = dataMat[:, i].min()
rangeMax = dataMat[:, i].max()
stepSize = (rangeMax - rangeMin) / numSteps
for j in xrange(-1, int(numSteps) + 1):
#不确定是哪个属于类'-1',哪个属于类'1',分两种情况
for inequal in ['left', 'right']:
threshold = rangeMin + j * stepSize#得到每个划分的阈值
predictionClass = singleStumpClassipy(dataMat, i, threshold, inequal)
errorMat = ones((m, 1))
errorMat[predictionClass == labelMat] = 0
weightedError = D.T * errorMat#D是每个样本的权重
if weightedError < minError:
minError = weightedError
bestClasEst = predictionClass.copy()
bestStump['dim'] = i
bestStump['threshold'] = threshold
bestStump['inequal'] = inequal
return bestStump, minError, bestClasEst
def adaBoostTrain(dataArr, classLabels, G):
weakClassArr = []
m = shape(dataArr)[0]#样本个数
#初始化D,即每个样本的权重
D = mat(ones((m, 1)) / m)
aggClasEst = mat(zeros((m, 1)))
for i in xrange(G):#G表示的是迭代次数
bestStump, minError, bestClasEst = singleStump(dataArr, classLabels, D)
print 'D:', D.T
#计算分类器的权重
alpha = float(0.5 * log((1.0 - minError) / max(minError, 1e-16)))
bestStump['alpha'] = alpha
weakClassArr.append(bestStump)
print 'bestClasEst:', bestClasEst.T
#重新计算每个样本的权重D
expon = multiply(-1 * alpha * mat(classLabels).T, bestClasEst)
D = multiply(D, exp(expon))
D = D / D.sum()
aggClasEst += alpha * bestClasEst
print 'aggClasEst:', aggClasEst
aggErrors = multiply(sign(aggClasEst) != mat(classLabels).T, ones((m, 1)))
errorRate = aggErrors.sum() / m
print 'total error:', errorRate
if errorRate == 0.0:
break
return weakClassArr
def adaBoostClassify(testData, weakClassify):
dataMat = mat(testData)
m = shape(dataMat)[0]
aggClassEst = mat(zeros((m, 1)))
for i in xrange(len(weakClassify)):#weakClassify是一个列表
classEst = singleStumpClassipy(dataMat, weakClassify[i]['dim'], weakClassify[i]['threshold'], weakClassify[i]['inequal'])
aggClassEst += weakClassify[i]['alpha'] * classEst
print aggClassEst
return sign(aggClassEst)
if __name__ == '__main__':
datMat, classLabels = loadSimpleData()
weakClassArr = adaBoostTrain(datMat, classLabels, 30)
print "weakClassArr:", weakClassArr
#test
result = adaBoostClassify([1, 1], weakClassArr)
print result
最终的决策树序列:
weakClassArr: [{'threshold': 1.3, 'dim': 0, 'inequal': 'left', 'alpha': 0.6931471805599453}, {'threshold': 1.0, 'dim': 1, 'inequal': 'left', 'alpha': 0.9729550745276565}, {'threshold': 0.90000000000000002, 'dim': 0, 'inequal': 'left', 'alpha': 0.8958797346140273}]
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30