简单易学的机器学习算法—谱聚类(Spectal Clustering)
一、复杂网络中的一些基本概念
1、复杂网络的表示
在复杂网络的表示中,复杂网络可以建模成一个图,其中,V表示网络中的节点的集合,E表示的是连接的集合。在复杂网络中,复杂网络可以是无向图、有向图、加权图或者超图。
2、网络簇结构
网络簇结构(network cluster structure)也称为网络社团结构(network community structure),是复杂网络中最普遍和最重要的拓扑属性之一。网络簇是整个网络中的稠密连接分支,具有同簇内部节点之间相互连接密集,不同簇的节点之间相互连接稀疏的特征。
3、复杂网络的分类
复杂网络主要分为:随机网络,小世界网络和无标度网络。
二、谱方法介绍
1、谱方法的思想
在谱聚类中定义了“截”函数的概念,当一个网络被划分成为两个子网络时,“截”即指子网间的连接密度。谱聚类的目的就是要找到一种合理的分割,使得分割后形成若干子图,连接不同的子图的边的权重尽可能低,即“截”最小,同子图内的边的权重尽可能高。
2、“截”函数的具体表现形式
“截”表示的是子网间的密度,即边比较少。以二分为例,将图聚类成两个类:S类和T类。假设用来表示图的划分,我们需要的结果为:
其中表示的是类别S和T之间的权重。对于K个不同的类别,优化的目标为:
3、基本“截”函数的弊端
对于上述的“截”函数,最终会导致不好的分割,如二分类问题:
上述的“截”函数通常会将图分割成一个点和其余n-1个点。
4、其他的“截”函数的表现形式
其中表示A类中包含的顶点的数目
三、Laplacian矩阵
1、Laplacian矩阵的定义
其中,d为图的度矩阵,a为图的邻接矩阵。
2、度矩阵的定义
对于一个有n个顶点的图,其邻接矩阵为:
其中。
3、Laplacian矩阵的性质
Laplacian矩阵;L是对称半正定矩阵;
性质3的证明:
4、不同的Laplacian矩阵
四、Laplacian矩阵与谱聚类中的优化函数的关系
1、由Laplacian矩阵到“截”函数
对于二个类别的聚类问题,优化的目标函数为:
其中,表示的是顶点的数目,对于确定的图来说是个常数。由上述的推导可知,由推导出了,由此可知:Laplacian矩阵与有优化的目标函数之间存在密切的联系。
2、新的目标函数
由上式可得:
其中
3、转化到Laplacian矩阵的求解
五、从二类别聚类到多类别聚类1、二类别聚类
2、多类别聚类
基于以上的分析,谱聚类的基本过程为:
对于给定的图,求图的度矩阵d和邻接矩阵a;
计算图的Laplacian矩阵;
对Laplacian矩阵进行特征值分解,取其前k个特征值对应的特征向量,构成的特征向量矩阵;
利用K-Means聚类算法对上述的的特征向量矩阵进行聚类,每一行代表一个样本点。
2、利用相似度矩阵的构造方法
[python] view plain copy 在CODE上查看代码片派生到我的代码片
#coding:UTF-8
'''''
Created on 2015年5月12日
@author: zhaozhiyong
'''
from __future__ import division
import scipy.io as scio
from scipy import sparse
from scipy.sparse.linalg.eigen import arpack#这里只能这么做,不然始终找不到函数eigs
from numpy import *
def spectalCluster(data, sigma, num_clusters):
print "将邻接矩阵转换成相似矩阵"
#先完成sigma != 0
print "Fixed-sigma谱聚类"
data = sparse.csc_matrix.multiply(data, data)
data = -data / (2 * sigma * sigma)
S = sparse.csc_matrix.expm1(data) + sparse.csc_matrix.multiply(sparse.csc_matrix.sign(data), sparse.csc_matrix.sign(data))
#转换成Laplacian矩阵
print "将相似矩阵转换成Laplacian矩阵"
D = S.sum(1)#相似矩阵是对称矩阵
D = sqrt(1 / D)
n = len(D)
D = D.T
D = sparse.spdiags(D, 0, n, n)
L = D * S * D
#求特征值和特征向量
print "求特征值和特征向量"
vals, vecs = arpack.eigs(L, k=num_clusters,tol=0,which="LM")
# 利用k-Means
print "利用K-Means对特征向量聚类"
#对vecs做正规化
sq_sum = sqrt(multiply(vecs,vecs).sum(1))
m_1, m_2 = shape(vecs)
for i in xrange(m_1):
for j in xrange(m_2):
vecs[i,j] = vecs[i,j]/sq_sum[i]
myCentroids, clustAssing = kMeans(vecs, num_clusters)
for i in xrange(shape(clustAssing)[0]):
print clustAssing[i,0]
def randCent(dataSet, k):
n = shape(dataSet)[1]
centroids = mat(zeros((k,n)))#create centroid mat
for j in range(n):#create random cluster centers, within bounds of each dimension
minJ = min(dataSet[:,j])
rangeJ = float(max(dataSet[:,j]) - minJ)
centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))
return centroids
def distEclud(vecA, vecB):
return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB)
def kMeans(dataSet, k):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2)))#create mat to assign data points to a centroid, also holds SE of each point
centroids = randCent(dataSet, k)
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m):#for each data point assign it to the closest centroid
minDist = inf; minIndex = -1
for j in range(k):
distJI = distEclud(centroids[j,:],dataSet[i,:])
if distJI < minDist:
minDist = distJI; minIndex = j
if clusterAssment[i,0] != minIndex: clusterChanged = True
clusterAssment[i,:] = minIndex,minDist**2
#print centroids
for cent in range(k):#recalculate centroids
ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#get all the point in this cluster
centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean
return centroids, clusterAssment
if __name__ == '__main__':
# 导入数据集
matf = 'E://data_sc//corel_50_NN_sym_distance.mat'
dataDic = scio.loadmat(matf)
data = dataDic['A']
# 谱聚类的过程
spectalCluster(data, 20, 18)
2、网上提供的一个Matlab代码
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [cluster_labels evd_time kmeans_time total_time] = sc(A, sigma, num_clusters)
%SC Spectral clustering using a sparse similarity matrix (t-nearest-neighbor).
%
% Input : A : N-by-N sparse distance matrix, where
% N is the number of data
% sigma : sigma value used in computing similarity,
% if 0, apply self-tunning technique
% num_clusters : number of clusters
%
% Output : cluster_labels : N-by-1 vector containing cluster labels
% evd_time : running time for eigendecomposition
% kmeans_time : running time for k-means
% total_time : total running time
%
% Convert the sparse distance matrix to a sparse similarity matrix,
% where S = exp^(-(A^2 / 2*sigma^2)).
% Note: This step can be ignored if A is sparse similarity matrix.
%
disp('Converting distance matrix to similarity matrix...');
tic;
n = size(A, 1);
if (sigma == 0) % Selftuning spectral clustering
% Find the count of nonzero for each column
disp('Selftuning spectral clustering...');
col_count = sum(A~=0, 1)';
col_sum = sum(A, 1)';
col_mean = col_sum ./ col_count;
[x y val] = find(A);
A = sparse(x, y, -val.*val./col_mean(x)./col_mean(y)./2);
clear col_count col_sum col_mean x y val;
else % Fixed-sigma spectral clustering
disp('Fixed-sigma spectral clustering...');
A = A.*A;
A = -A/(2*sigma*sigma);
end
% Do exp function sequentially because of memory limitation
num = 2000;
num_iter = ceil(n/num);
S = sparse([]);
for i = 1:num_iter
start_index = 1 + (i-1)*num;
end_index = min(i*num, n);
S1 = spfun(@exp, A(:,start_index:end_index)); % sparse exponential func
S = [S S1];
clear S1;
end
clear A;
toc;
%
% Do laplacian, L = D^(-1/2) * S * D^(-1/2)
%
disp('Doing Laplacian...');
D = sum(S, 2) + (1e-10);
D = sqrt(1./D); % D^(-1/2)
D = spdiags(D, 0, n, n);
L = D * S * D;
clear D S;
time1 = toc;
%
% Do eigendecomposition, if L =
% D^(-1/2) * S * D(-1/2) : set 'LM' (Largest Magnitude), or
% I - D^(-1/2) * S * D(-1/2): set 'SM' (Smallest Magnitude).
%
disp('Performing eigendecomposition...');
OPTS.disp = 0;
[V, val] = eigs(L, num_clusters, 'LM', OPTS);
time2 = toc;
%
% Do k-means
%
disp('Performing kmeans...');
% Normalize each row to be of unit length
sq_sum = sqrt(sum(V.*V, 2)) + 1e-20;
U = V ./ repmat(sq_sum, 1, num_clusters);
clear sq_sum V;
cluster_labels = k_means(U, [], num_clusters);
total_time = toc;
%
% Calculate and show time statistics
%
evd_time = time2 - time1
kmeans_time = total_time - time2
total_time
disp('Finished!');
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function cluster_labels = k_means(data, centers, num_clusters)
%K_MEANS Euclidean k-means clustering algorithm.
%
% Input : data : N-by-D data matrix, where N is the number of data,
% D is the number of dimensions
% centers : K-by-D matrix, where K is num_clusters, or
% 'random', random initialization, or
% [], empty matrix, orthogonal initialization
% num_clusters : Number of clusters
%
% Output : cluster_labels : N-by-1 vector of cluster assignment
%
% Reference: Dimitrios Zeimpekis, Efstratios Gallopoulos, 2006.
% http://scgroup.hpclab.ceid.upatras.gr/scgroup/Projects/TMG/
%
% Parameter setting
%
iter = 0;
qold = inf;
threshold = 0.001;
%
% Check if with initial centers
%
if strcmp(centers, 'random')
disp('Random initialization...');
centers = random_init(data, num_clusters);
elseif isempty(centers)
disp('Orthogonal initialization...');
centers = orth_init(data, num_clusters);
end
%
% Double type is required for sparse matrix multiply
%
data = double(data);
centers = double(centers);
%
% Calculate the distance (square) between data and centers
%
n = size(data, 1);
x = sum(data.*data, 2)';
X = x(ones(num_clusters, 1), :);
y = sum(centers.*centers, 2);
Y = y(:, ones(n, 1));
P = X + Y - 2*centers*data';
%
% Main program
%
while 1
iter = iter + 1;
% Find the closest cluster for each data point
[val, ind] = min(P, [], 1);
% Sum up data points within each cluster
P = sparse(ind, 1:n, 1, num_clusters, n);
centers = P*data;
% Size of each cluster, for cluster whose size is 0 we keep it empty
cluster_size = P*ones(n, 1);
% For empty clusters, initialize again
zero_cluster = find(cluster_size==0);
if length(zero_cluster) > 0
disp('Zero centroid. Initialize again...');
centers(zero_cluster, :)= random_init(data, length(zero_cluster));
cluster_size(zero_cluster) = 1;
end
% Update centers
centers = spdiags(1./cluster_size, 0, num_clusters, num_clusters)*centers;
% Update distance (square) to new centers
y = sum(centers.*centers, 2);
Y = y(:, ones(n, 1));
P = X + Y - 2*centers*data';
% Calculate objective function value
qnew = sum(sum(sparse(ind, 1:n, 1, size(P, 1), size(P, 2)).*P));
mesg = sprintf('Iteration %d:\n\tQold=%g\t\tQnew=%g', iter, full(qold), full(qnew));
disp(mesg);
% Check if objective function value is less than/equal to threshold
if threshold >= abs((qnew-qold)/qold)
mesg = sprintf('\nkmeans converged!');
disp(mesg);
break;
end
qold = qnew;
end
cluster_labels = ind';
%-----------------------------------------------------------------------------
function init_centers = random_init(data, num_clusters)
%RANDOM_INIT Initialize centroids choosing num_clusters rows of data at random
%
% Input : data : N-by-D data matrix, where N is the number of data,
% D is the number of dimensions
% num_clusters : Number of clusters
%
% Output: init_centers : K-by-D matrix, where K is num_clusters
rand('twister', sum(100*clock));
init_centers = data(ceil(size(data, 1)*rand(1, num_clusters)), :);
function init_centers = orth_init(data, num_clusters)
%ORTH_INIT Initialize orthogonal centers for k-means clustering algorithm.
%
% Input : data : N-by-D data matrix, where N is the number of data,
% D is the number of dimensions
% num_clusters : Number of clusters
%
% Output: init_centers : K-by-D matrix, where K is num_clusters
%
% Find the num_clusters centers which are orthogonal to each other
%
Uniq = unique(data, 'rows'); % Avoid duplicate centers
num = size(Uniq, 1);
first = ceil(rand(1)*num); % Randomly select the first center
init_centers = zeros(num_clusters, size(data, 2)); % Storage for centers
init_centers(1, :) = Uniq(first, :);
Uniq(first, :) = [];
c = zeros(num-1, 1); % Accumalated orthogonal values to existing centers for non-centers
% Find the rest num_clusters-1 centers
for j = 2:num_clusters
c = c + abs(Uniq*init_centers(j-1, :)');
[minimum, i] = min(c); % Select the most orthogonal one as next center
init_centers(j, :) = Uniq(i, :);
Uniq(i, :) = [];
c(i) = [];
end
clear c Uniq;
个人的一点认识:谱聚类的过程相当于先进行一个非线性的降维,然后在这样的低维空间中再利用聚类的方法进行聚类。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16