简单易学的机器学习算法—谱聚类(Spectal Clustering)
一、复杂网络中的一些基本概念
1、复杂网络的表示
在复杂网络的表示中,复杂网络可以建模成一个图,其中,V表示网络中的节点的集合,E表示的是连接的集合。在复杂网络中,复杂网络可以是无向图、有向图、加权图或者超图。
2、网络簇结构
网络簇结构(network cluster structure)也称为网络社团结构(network community structure),是复杂网络中最普遍和最重要的拓扑属性之一。网络簇是整个网络中的稠密连接分支,具有同簇内部节点之间相互连接密集,不同簇的节点之间相互连接稀疏的特征。
3、复杂网络的分类
复杂网络主要分为:随机网络,小世界网络和无标度网络。
二、谱方法介绍
1、谱方法的思想
在谱聚类中定义了“截”函数的概念,当一个网络被划分成为两个子网络时,“截”即指子网间的连接密度。谱聚类的目的就是要找到一种合理的分割,使得分割后形成若干子图,连接不同的子图的边的权重尽可能低,即“截”最小,同子图内的边的权重尽可能高。
2、“截”函数的具体表现形式
“截”表示的是子网间的密度,即边比较少。以二分为例,将图聚类成两个类:S类和T类。假设用来表示图的划分,我们需要的结果为:
其中表示的是类别S和T之间的权重。对于K个不同的类别,优化的目标为:
3、基本“截”函数的弊端
对于上述的“截”函数,最终会导致不好的分割,如二分类问题:
上述的“截”函数通常会将图分割成一个点和其余n-1个点。
4、其他的“截”函数的表现形式
其中表示A类中包含的顶点的数目
三、Laplacian矩阵
1、Laplacian矩阵的定义
其中,d为图的度矩阵,a为图的邻接矩阵。
2、度矩阵的定义
对于一个有n个顶点的图,其邻接矩阵为:
其中。
3、Laplacian矩阵的性质
Laplacian矩阵;L是对称半正定矩阵;
性质3的证明:
4、不同的Laplacian矩阵
四、Laplacian矩阵与谱聚类中的优化函数的关系
1、由Laplacian矩阵到“截”函数
对于二个类别的聚类问题,优化的目标函数为:
其中,表示的是顶点的数目,对于确定的图来说是个常数。由上述的推导可知,由推导出了,由此可知:Laplacian矩阵与有优化的目标函数之间存在密切的联系。
2、新的目标函数
由上式可得:
其中
3、转化到Laplacian矩阵的求解
五、从二类别聚类到多类别聚类1、二类别聚类
2、多类别聚类
基于以上的分析,谱聚类的基本过程为:
对于给定的图,求图的度矩阵d和邻接矩阵a;
计算图的Laplacian矩阵;
对Laplacian矩阵进行特征值分解,取其前k个特征值对应的特征向量,构成的特征向量矩阵;
利用K-Means聚类算法对上述的的特征向量矩阵进行聚类,每一行代表一个样本点。
2、利用相似度矩阵的构造方法
[python] view plain copy 在CODE上查看代码片派生到我的代码片
#coding:UTF-8
'''''
Created on 2015年5月12日
@author: zhaozhiyong
'''
from __future__ import division
import scipy.io as scio
from scipy import sparse
from scipy.sparse.linalg.eigen import arpack#这里只能这么做,不然始终找不到函数eigs
from numpy import *
def spectalCluster(data, sigma, num_clusters):
print "将邻接矩阵转换成相似矩阵"
#先完成sigma != 0
print "Fixed-sigma谱聚类"
data = sparse.csc_matrix.multiply(data, data)
data = -data / (2 * sigma * sigma)
S = sparse.csc_matrix.expm1(data) + sparse.csc_matrix.multiply(sparse.csc_matrix.sign(data), sparse.csc_matrix.sign(data))
#转换成Laplacian矩阵
print "将相似矩阵转换成Laplacian矩阵"
D = S.sum(1)#相似矩阵是对称矩阵
D = sqrt(1 / D)
n = len(D)
D = D.T
D = sparse.spdiags(D, 0, n, n)
L = D * S * D
#求特征值和特征向量
print "求特征值和特征向量"
vals, vecs = arpack.eigs(L, k=num_clusters,tol=0,which="LM")
# 利用k-Means
print "利用K-Means对特征向量聚类"
#对vecs做正规化
sq_sum = sqrt(multiply(vecs,vecs).sum(1))
m_1, m_2 = shape(vecs)
for i in xrange(m_1):
for j in xrange(m_2):
vecs[i,j] = vecs[i,j]/sq_sum[i]
myCentroids, clustAssing = kMeans(vecs, num_clusters)
for i in xrange(shape(clustAssing)[0]):
print clustAssing[i,0]
def randCent(dataSet, k):
n = shape(dataSet)[1]
centroids = mat(zeros((k,n)))#create centroid mat
for j in range(n):#create random cluster centers, within bounds of each dimension
minJ = min(dataSet[:,j])
rangeJ = float(max(dataSet[:,j]) - minJ)
centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))
return centroids
def distEclud(vecA, vecB):
return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB)
def kMeans(dataSet, k):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2)))#create mat to assign data points to a centroid, also holds SE of each point
centroids = randCent(dataSet, k)
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m):#for each data point assign it to the closest centroid
minDist = inf; minIndex = -1
for j in range(k):
distJI = distEclud(centroids[j,:],dataSet[i,:])
if distJI < minDist:
minDist = distJI; minIndex = j
if clusterAssment[i,0] != minIndex: clusterChanged = True
clusterAssment[i,:] = minIndex,minDist**2
#print centroids
for cent in range(k):#recalculate centroids
ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#get all the point in this cluster
centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean
return centroids, clusterAssment
if __name__ == '__main__':
# 导入数据集
matf = 'E://data_sc//corel_50_NN_sym_distance.mat'
dataDic = scio.loadmat(matf)
data = dataDic['A']
# 谱聚类的过程
spectalCluster(data, 20, 18)
2、网上提供的一个Matlab代码
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [cluster_labels evd_time kmeans_time total_time] = sc(A, sigma, num_clusters)
%SC Spectral clustering using a sparse similarity matrix (t-nearest-neighbor).
%
% Input : A : N-by-N sparse distance matrix, where
% N is the number of data
% sigma : sigma value used in computing similarity,
% if 0, apply self-tunning technique
% num_clusters : number of clusters
%
% Output : cluster_labels : N-by-1 vector containing cluster labels
% evd_time : running time for eigendecomposition
% kmeans_time : running time for k-means
% total_time : total running time
%
% Convert the sparse distance matrix to a sparse similarity matrix,
% where S = exp^(-(A^2 / 2*sigma^2)).
% Note: This step can be ignored if A is sparse similarity matrix.
%
disp('Converting distance matrix to similarity matrix...');
tic;
n = size(A, 1);
if (sigma == 0) % Selftuning spectral clustering
% Find the count of nonzero for each column
disp('Selftuning spectral clustering...');
col_count = sum(A~=0, 1)';
col_sum = sum(A, 1)';
col_mean = col_sum ./ col_count;
[x y val] = find(A);
A = sparse(x, y, -val.*val./col_mean(x)./col_mean(y)./2);
clear col_count col_sum col_mean x y val;
else % Fixed-sigma spectral clustering
disp('Fixed-sigma spectral clustering...');
A = A.*A;
A = -A/(2*sigma*sigma);
end
% Do exp function sequentially because of memory limitation
num = 2000;
num_iter = ceil(n/num);
S = sparse([]);
for i = 1:num_iter
start_index = 1 + (i-1)*num;
end_index = min(i*num, n);
S1 = spfun(@exp, A(:,start_index:end_index)); % sparse exponential func
S = [S S1];
clear S1;
end
clear A;
toc;
%
% Do laplacian, L = D^(-1/2) * S * D^(-1/2)
%
disp('Doing Laplacian...');
D = sum(S, 2) + (1e-10);
D = sqrt(1./D); % D^(-1/2)
D = spdiags(D, 0, n, n);
L = D * S * D;
clear D S;
time1 = toc;
%
% Do eigendecomposition, if L =
% D^(-1/2) * S * D(-1/2) : set 'LM' (Largest Magnitude), or
% I - D^(-1/2) * S * D(-1/2): set 'SM' (Smallest Magnitude).
%
disp('Performing eigendecomposition...');
OPTS.disp = 0;
[V, val] = eigs(L, num_clusters, 'LM', OPTS);
time2 = toc;
%
% Do k-means
%
disp('Performing kmeans...');
% Normalize each row to be of unit length
sq_sum = sqrt(sum(V.*V, 2)) + 1e-20;
U = V ./ repmat(sq_sum, 1, num_clusters);
clear sq_sum V;
cluster_labels = k_means(U, [], num_clusters);
total_time = toc;
%
% Calculate and show time statistics
%
evd_time = time2 - time1
kmeans_time = total_time - time2
total_time
disp('Finished!');
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function cluster_labels = k_means(data, centers, num_clusters)
%K_MEANS Euclidean k-means clustering algorithm.
%
% Input : data : N-by-D data matrix, where N is the number of data,
% D is the number of dimensions
% centers : K-by-D matrix, where K is num_clusters, or
% 'random', random initialization, or
% [], empty matrix, orthogonal initialization
% num_clusters : Number of clusters
%
% Output : cluster_labels : N-by-1 vector of cluster assignment
%
% Reference: Dimitrios Zeimpekis, Efstratios Gallopoulos, 2006.
% http://scgroup.hpclab.ceid.upatras.gr/scgroup/Projects/TMG/
%
% Parameter setting
%
iter = 0;
qold = inf;
threshold = 0.001;
%
% Check if with initial centers
%
if strcmp(centers, 'random')
disp('Random initialization...');
centers = random_init(data, num_clusters);
elseif isempty(centers)
disp('Orthogonal initialization...');
centers = orth_init(data, num_clusters);
end
%
% Double type is required for sparse matrix multiply
%
data = double(data);
centers = double(centers);
%
% Calculate the distance (square) between data and centers
%
n = size(data, 1);
x = sum(data.*data, 2)';
X = x(ones(num_clusters, 1), :);
y = sum(centers.*centers, 2);
Y = y(:, ones(n, 1));
P = X + Y - 2*centers*data';
%
% Main program
%
while 1
iter = iter + 1;
% Find the closest cluster for each data point
[val, ind] = min(P, [], 1);
% Sum up data points within each cluster
P = sparse(ind, 1:n, 1, num_clusters, n);
centers = P*data;
% Size of each cluster, for cluster whose size is 0 we keep it empty
cluster_size = P*ones(n, 1);
% For empty clusters, initialize again
zero_cluster = find(cluster_size==0);
if length(zero_cluster) > 0
disp('Zero centroid. Initialize again...');
centers(zero_cluster, :)= random_init(data, length(zero_cluster));
cluster_size(zero_cluster) = 1;
end
% Update centers
centers = spdiags(1./cluster_size, 0, num_clusters, num_clusters)*centers;
% Update distance (square) to new centers
y = sum(centers.*centers, 2);
Y = y(:, ones(n, 1));
P = X + Y - 2*centers*data';
% Calculate objective function value
qnew = sum(sum(sparse(ind, 1:n, 1, size(P, 1), size(P, 2)).*P));
mesg = sprintf('Iteration %d:\n\tQold=%g\t\tQnew=%g', iter, full(qold), full(qnew));
disp(mesg);
% Check if objective function value is less than/equal to threshold
if threshold >= abs((qnew-qold)/qold)
mesg = sprintf('\nkmeans converged!');
disp(mesg);
break;
end
qold = qnew;
end
cluster_labels = ind';
%-----------------------------------------------------------------------------
function init_centers = random_init(data, num_clusters)
%RANDOM_INIT Initialize centroids choosing num_clusters rows of data at random
%
% Input : data : N-by-D data matrix, where N is the number of data,
% D is the number of dimensions
% num_clusters : Number of clusters
%
% Output: init_centers : K-by-D matrix, where K is num_clusters
rand('twister', sum(100*clock));
init_centers = data(ceil(size(data, 1)*rand(1, num_clusters)), :);
function init_centers = orth_init(data, num_clusters)
%ORTH_INIT Initialize orthogonal centers for k-means clustering algorithm.
%
% Input : data : N-by-D data matrix, where N is the number of data,
% D is the number of dimensions
% num_clusters : Number of clusters
%
% Output: init_centers : K-by-D matrix, where K is num_clusters
%
% Find the num_clusters centers which are orthogonal to each other
%
Uniq = unique(data, 'rows'); % Avoid duplicate centers
num = size(Uniq, 1);
first = ceil(rand(1)*num); % Randomly select the first center
init_centers = zeros(num_clusters, size(data, 2)); % Storage for centers
init_centers(1, :) = Uniq(first, :);
Uniq(first, :) = [];
c = zeros(num-1, 1); % Accumalated orthogonal values to existing centers for non-centers
% Find the rest num_clusters-1 centers
for j = 2:num_clusters
c = c + abs(Uniq*init_centers(j-1, :)');
[minimum, i] = min(c); % Select the most orthogonal one as next center
init_centers(j, :) = Uniq(i, :);
Uniq(i, :) = [];
c(i) = [];
end
clear c Uniq;
个人的一点认识:谱聚类的过程相当于先进行一个非线性的降维,然后在这样的低维空间中再利用聚类的方法进行聚类。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20