京公网安备 11010802034615号
经营许可证编号:京B2-20210330
优化算法—拟牛顿法之DFP算法
一、牛顿法
,其中x表示向量。在牛顿法的求解过程中,首先是将函数
在
处展开,展开式为:

,表示的是目标函数在
的梯度,是一个向量。
,表示的是目标函数在
处的Hesse矩阵。省略掉最后面的高阶无穷小项,即为:




时,上式为:

此时,是否可以通过
模拟出Hesse矩阵的构造过程?此方法便称为拟牛顿法(QuasiNewton),上式称为拟牛顿方程。在拟牛顿法中,主要包括DFP拟牛顿法,BFGS拟牛顿法。
二、DFP拟牛顿法
1、DFP拟牛顿法简介


,可以得到:

2、DFP校正方法的推导
,其中
的向量。
。
可以简化为:

代入上式:

代入上式:

为实数
的向量。上式中,参数a和
解的可能性有很多,我们取特殊的情况,假设
。则:


则:

3、DFP拟牛顿法的算法流程
对称正定,
由上述的DFP校正公式确定,那么
对称正定的充要条件是
。

DFP拟牛顿法的算法流程如下:
4、求解具体的优化问题

。
[python] view plain copy 在CODE上查看代码片派生到我的代码片
#coding:UTF-8
'''''
Created on 2015年5月19日
@author: zhaozhiyong
'''
from numpy import *
#fun
def fun(x):
return 100 * (x[0,0] ** 2 - x[1,0]) ** 2 + (x[0,0] - 1) ** 2
#gfun
def gfun(x):
result = zeros((2, 1))
result[0, 0] = 400 * x[0,0] * (x[0,0] ** 2 - x[1,0]) + 2 * (x[0,0] - 1)
result[1, 0] = -200 * (x[0,0] ** 2 - x[1,0])
return result
dfp.py
[python] view plain copy 在CODE上查看代码片派生到我的代码片
#coding:UTF-8
'''''
Created on 2015年5月19日
@author: zhaozhiyong
'''
from numpy import *
from function import *
def dfp(fun, gfun, x0):
result = []
maxk = 500
rho = 0.55
sigma = 0.4
m = shape(x0)[0]
Hk = eye(m)
k = 0
while (k < maxk):
gk = mat(gfun(x0))#计算梯度
dk = -mat(Hk)*gk
m = 0
mk = 0
while (m < 20):
newf = fun(x0 + rho ** m * dk)
oldf = fun(x0)
if (newf < oldf + sigma * (rho ** m) * (gk.T * dk)[0,0]):
mk = m
break
m = m + 1
#DFP校正
x = x0 + rho ** mk * dk
sk = x - x0
yk = gfun(x) - gk
if (sk.T * yk > 0):
Hk = Hk - (Hk * yk * yk.T * Hk) / (yk.T * Hk * yk) + (sk * sk.T) / (sk.T * yk)
k = k + 1
x0 = x
result.append(fun(x0))
return result
testDFP.py
[python] view plain copy 在CODE上查看代码片派生到我的代码片
#coding:UTF-8 数据分析师培训
'''''
Created on 2015年5月19日
@author: zhaozhiyong
'''
from bfgs import *
from dfp import dfp
import matplotlib.pyplot as plt
x0 = mat([[-1.2], [1]])
result = dfp(fun, gfun, x0)
n = len(result)
ax = plt.figure().add_subplot(111)
x = arange(0, n, 1)
y = result
ax.plot(x,y)
plt.show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21