统计挖掘那些事:分层抽样与交叉验证
1留出法(Hold out)与分层抽样
留出法的意思就是直接将总数据D划分为两个对立集合,训练集S以及测试集T,我们有S+T=D,以及S交T等于空集;
举个简单例子说明,例如我们在研究客户流失,在集合D中我们有1000个样本,我们利用随机抽样的方法从中抽取800个样本作为训练集,剩下的200个作为测试集。
划分出集合后,我们就可以在训练集S上进行模型训练,再在测试集T上评估结果。假如在训练集中,我们有700个样本被正确分类,那么分类的正确率就有700/800*100%=87.5%,而在测试集中,假如我们只有150个样本被正确分类,那么分类的正确率绩优150/200*100%=75%.
但实际上,这样的做法是存在一定的问题的。由于我们采取的是完全随机抽样的方法,这就可能会由于抽样划分的问题而改变了原有的数据分布。
例如在上述1000个样本中,其中有200名客户被标记为流失,800名客户被标记为普通客户。
接下来,我们随机抽取数据集D中的800个样本作为训练集,200个样本作为测试。但是由于抽样的问题,其中有100名流失客户被分在了训练集,另外的100名客户被分在了测试集。
让我们在回顾一下分布比例,原本在数据集D中,流失客户的分布比例是20%,而经过划分后,我们在训练集中的流失比例只有12.5%,而在测试集中流失比例达到50%,显然,我们的数据分布与原有的数据分布发生了极大的改变,而这很有可能给我们的模型训练以及评估带来非常大的隐患。
因此,为了避免这种情况,在我们使用留出法进行训练集测试集划分的时候,也会采用分层抽样的方法。
回到原来的例子,我们可能从200个流失客户中随机抽取80%放到训练集,20%放到测试集;再从800个非流失客户中抽取80%放到训练集,剩下20%又放回到测试集。值得注意的是,划分训练集以及测试集的方法是多样的,我们完全可以通过抽样方法的结合,帮助我们更好的决定训练集以及测试集的组成;
除了结合抽样方式,另外一种改进策略被称为“重复抽样”。它的思想是这样的,考虑到我们只进行一次随机抽样划分训练集与测试集可能会有存在较大的不稳定性,因此我们就将抽样结果重复p次,最后把p次结果进行加和求平均。
2交叉验证(Cross Validation)
虽然留出法可以通过分层抽样解决数据分布不等的问题,但是由于我们需要拿出一部分数据作为测试,因此总有部分的数据不能用于构建模型,而一种更好的选择是交叉验证,一般也简称CV。
交叉验证法是一个将整体数据集平均划分为k份,先取第一份子集数据作为测试集,剩下的k-1份子集数据作为训练集进行一次试验;之后再取第二份子集数据,剩下的k-1份子集数据在进行一次试验,不断往复,最后重复k次的过程,一般我们称之为k折交叉检验,交叉检验是我们进行参数调整过程中非常重要的一个方法。
一般我们常用十折交叉检验,不妨我们设定k=10进行举例:
首先我们把总数据集划分为10份,分别成D1,D2,… …,D10;
以上过程,我们称之为10折交叉检验。一般而言,在平常的使用中,10折交叉检验比较常见,当然也会有5折交叉检验,3折交叉检验。
更进一步地,类似于留出法可以采取重复抽样,对于交叉检验来说同样也存在着划分方式的不同情况,因此我们也可以采用不同的划分方式重复进行交叉试验的方法,例如,我们利用不同的划分方式划分数据5次,每次都是划分为10折,那我们就称之为5次10折交叉试验
特别地,交叉验证还有一种特殊情况,称之为留一交叉验证(leave one Out)。它是指,我们令样本划分次数k等于数据集合D的样本数量n,即对样本集合D划分为n份子集,每份子集只包含一个样本。这个方法的优缺点都十分的明显,优点点我们每次的训练集都与原始数据集非常接近,并且也能做到训练集与测试集是对立的,这样可以保证我们得到的结果相对比较准确。但相对而言,采取这样的方式也意味着我们的计算开销会大大增加。数据分析师培训
首先选择D1数据集作为测试集,D2,…D10作为训练集。在训练集上构建模型,在测试集上进行模型评估,得到评估记过O1;
之后选择D2数据集作为测试集,D1,D3,…D10作为训练集。在训练集上构建模型,在测试集上进行模型评估,得到评估记过O2;
分别抽去D3,D4,…,D10作为测试集,一共重复10次,并得到10个结果:O1,O2,…,O10;
将得到10个结果:O1,O2,…,O10加和取平均,作为最终评估结果O。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20