统计挖掘那些事:分层抽样与交叉验证
1留出法(Hold out)与分层抽样
留出法的意思就是直接将总数据D划分为两个对立集合,训练集S以及测试集T,我们有S+T=D,以及S交T等于空集;
举个简单例子说明,例如我们在研究客户流失,在集合D中我们有1000个样本,我们利用随机抽样的方法从中抽取800个样本作为训练集,剩下的200个作为测试集。
划分出集合后,我们就可以在训练集S上进行模型训练,再在测试集T上评估结果。假如在训练集中,我们有700个样本被正确分类,那么分类的正确率就有700/800*100%=87.5%,而在测试集中,假如我们只有150个样本被正确分类,那么分类的正确率绩优150/200*100%=75%.
但实际上,这样的做法是存在一定的问题的。由于我们采取的是完全随机抽样的方法,这就可能会由于抽样划分的问题而改变了原有的数据分布。
例如在上述1000个样本中,其中有200名客户被标记为流失,800名客户被标记为普通客户。
接下来,我们随机抽取数据集D中的800个样本作为训练集,200个样本作为测试。但是由于抽样的问题,其中有100名流失客户被分在了训练集,另外的100名客户被分在了测试集。
让我们在回顾一下分布比例,原本在数据集D中,流失客户的分布比例是20%,而经过划分后,我们在训练集中的流失比例只有12.5%,而在测试集中流失比例达到50%,显然,我们的数据分布与原有的数据分布发生了极大的改变,而这很有可能给我们的模型训练以及评估带来非常大的隐患。
因此,为了避免这种情况,在我们使用留出法进行训练集测试集划分的时候,也会采用分层抽样的方法。
回到原来的例子,我们可能从200个流失客户中随机抽取80%放到训练集,20%放到测试集;再从800个非流失客户中抽取80%放到训练集,剩下20%又放回到测试集。值得注意的是,划分训练集以及测试集的方法是多样的,我们完全可以通过抽样方法的结合,帮助我们更好的决定训练集以及测试集的组成;
除了结合抽样方式,另外一种改进策略被称为“重复抽样”。它的思想是这样的,考虑到我们只进行一次随机抽样划分训练集与测试集可能会有存在较大的不稳定性,因此我们就将抽样结果重复p次,最后把p次结果进行加和求平均。
2交叉验证(Cross Validation)
虽然留出法可以通过分层抽样解决数据分布不等的问题,但是由于我们需要拿出一部分数据作为测试,因此总有部分的数据不能用于构建模型,而一种更好的选择是交叉验证,一般也简称CV。
交叉验证法是一个将整体数据集平均划分为k份,先取第一份子集数据作为测试集,剩下的k-1份子集数据作为训练集进行一次试验;之后再取第二份子集数据,剩下的k-1份子集数据在进行一次试验,不断往复,最后重复k次的过程,一般我们称之为k折交叉检验,交叉检验是我们进行参数调整过程中非常重要的一个方法。
一般我们常用十折交叉检验,不妨我们设定k=10进行举例:
首先我们把总数据集划分为10份,分别成D1,D2,… …,D10;
以上过程,我们称之为10折交叉检验。一般而言,在平常的使用中,10折交叉检验比较常见,当然也会有5折交叉检验,3折交叉检验。
更进一步地,类似于留出法可以采取重复抽样,对于交叉检验来说同样也存在着划分方式的不同情况,因此我们也可以采用不同的划分方式重复进行交叉试验的方法,例如,我们利用不同的划分方式划分数据5次,每次都是划分为10折,那我们就称之为5次10折交叉试验
特别地,交叉验证还有一种特殊情况,称之为留一交叉验证(leave one Out)。它是指,我们令样本划分次数k等于数据集合D的样本数量n,即对样本集合D划分为n份子集,每份子集只包含一个样本。这个方法的优缺点都十分的明显,优点点我们每次的训练集都与原始数据集非常接近,并且也能做到训练集与测试集是对立的,这样可以保证我们得到的结果相对比较准确。但相对而言,采取这样的方式也意味着我们的计算开销会大大增加。数据分析师培训
首先选择D1数据集作为测试集,D2,…D10作为训练集。在训练集上构建模型,在测试集上进行模型评估,得到评估记过O1;
之后选择D2数据集作为测试集,D1,D3,…D10作为训练集。在训练集上构建模型,在测试集上进行模型评估,得到评估记过O2;
分别抽去D3,D4,…,D10作为测试集,一共重复10次,并得到10个结果:O1,O2,…,O10;
将得到10个结果:O1,O2,…,O10加和取平均,作为最终评估结果O。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31