统计挖掘那些事:分层抽样与交叉验证
1留出法(Hold out)与分层抽样
留出法的意思就是直接将总数据D划分为两个对立集合,训练集S以及测试集T,我们有S+T=D,以及S交T等于空集;
举个简单例子说明,例如我们在研究客户流失,在集合D中我们有1000个样本,我们利用随机抽样的方法从中抽取800个样本作为训练集,剩下的200个作为测试集。
划分出集合后,我们就可以在训练集S上进行模型训练,再在测试集T上评估结果。假如在训练集中,我们有700个样本被正确分类,那么分类的正确率就有700/800*100%=87.5%,而在测试集中,假如我们只有150个样本被正确分类,那么分类的正确率绩优150/200*100%=75%.
但实际上,这样的做法是存在一定的问题的。由于我们采取的是完全随机抽样的方法,这就可能会由于抽样划分的问题而改变了原有的数据分布。
例如在上述1000个样本中,其中有200名客户被标记为流失,800名客户被标记为普通客户。
接下来,我们随机抽取数据集D中的800个样本作为训练集,200个样本作为测试。但是由于抽样的问题,其中有100名流失客户被分在了训练集,另外的100名客户被分在了测试集。
让我们在回顾一下分布比例,原本在数据集D中,流失客户的分布比例是20%,而经过划分后,我们在训练集中的流失比例只有12.5%,而在测试集中流失比例达到50%,显然,我们的数据分布与原有的数据分布发生了极大的改变,而这很有可能给我们的模型训练以及评估带来非常大的隐患。
因此,为了避免这种情况,在我们使用留出法进行训练集测试集划分的时候,也会采用分层抽样的方法。
回到原来的例子,我们可能从200个流失客户中随机抽取80%放到训练集,20%放到测试集;再从800个非流失客户中抽取80%放到训练集,剩下20%又放回到测试集。值得注意的是,划分训练集以及测试集的方法是多样的,我们完全可以通过抽样方法的结合,帮助我们更好的决定训练集以及测试集的组成;
除了结合抽样方式,另外一种改进策略被称为“重复抽样”。它的思想是这样的,考虑到我们只进行一次随机抽样划分训练集与测试集可能会有存在较大的不稳定性,因此我们就将抽样结果重复p次,最后把p次结果进行加和求平均。
2交叉验证(Cross Validation)
虽然留出法可以通过分层抽样解决数据分布不等的问题,但是由于我们需要拿出一部分数据作为测试,因此总有部分的数据不能用于构建模型,而一种更好的选择是交叉验证,一般也简称CV。
交叉验证法是一个将整体数据集平均划分为k份,先取第一份子集数据作为测试集,剩下的k-1份子集数据作为训练集进行一次试验;之后再取第二份子集数据,剩下的k-1份子集数据在进行一次试验,不断往复,最后重复k次的过程,一般我们称之为k折交叉检验,交叉检验是我们进行参数调整过程中非常重要的一个方法。
一般我们常用十折交叉检验,不妨我们设定k=10进行举例:
首先我们把总数据集划分为10份,分别成D1,D2,… …,D10;
以上过程,我们称之为10折交叉检验。一般而言,在平常的使用中,10折交叉检验比较常见,当然也会有5折交叉检验,3折交叉检验。
更进一步地,类似于留出法可以采取重复抽样,对于交叉检验来说同样也存在着划分方式的不同情况,因此我们也可以采用不同的划分方式重复进行交叉试验的方法,例如,我们利用不同的划分方式划分数据5次,每次都是划分为10折,那我们就称之为5次10折交叉试验
特别地,交叉验证还有一种特殊情况,称之为留一交叉验证(leave one Out)。它是指,我们令样本划分次数k等于数据集合D的样本数量n,即对样本集合D划分为n份子集,每份子集只包含一个样本。这个方法的优缺点都十分的明显,优点点我们每次的训练集都与原始数据集非常接近,并且也能做到训练集与测试集是对立的,这样可以保证我们得到的结果相对比较准确。但相对而言,采取这样的方式也意味着我们的计算开销会大大增加。数据分析师培训
首先选择D1数据集作为测试集,D2,…D10作为训练集。在训练集上构建模型,在测试集上进行模型评估,得到评估记过O1;
之后选择D2数据集作为测试集,D1,D3,…D10作为训练集。在训练集上构建模型,在测试集上进行模型评估,得到评估记过O2;
分别抽去D3,D4,…,D10作为测试集,一共重复10次,并得到10个结果:O1,O2,…,O10;
将得到10个结果:O1,O2,…,O10加和取平均,作为最终评估结果O。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16