
两种SAS代码实现变量的缺失值频数及占比
sas对缺失值的统计,可得出缺失值的频数及占比。以下为详细程序代码:
/*首先是创建示例数据集*/
data tmp;
infile datalines delimiter=",";
length var1 $8.;
length var2 8.;
length var3 $8.;
length var4 8.;
input var1 $ var2 var3 $ var4
@@;
datalines;
A,1,B,2.,3,C,.C,.,.,3
;
run;
如图得到下列数据集
然后统计数据集中缺失值和占比,先为字符型和数值型先分别设定一个format,然后直接对变量进行频数统计,再做一下简单处理,就可得到理想结果。
代码如下
proc format;
value num_f . = "0"
low-high = "1" ;
value $char_f " " = "0"
other = "1" ;
run;
/*频数统计*/
ods output onewayfreqs=tables;
proc freq data= tmp ;
tables _all_ / missing;
format _numeric_ num_f. _character_ $char_f.;
run;
ods output close;
数据集如下:
/*保留缺失变量、频数和占比*/
data miss;
length variable $50;
set tables;
variable = scan(Table,2,"“"); /*获取变量名*/
/*由于变量都是F_开头,因此可以用F_:来包含所有变量*/
value = max(of F_:);
if value = 0; /*缺失标志*/
keep variable frequency percent;
label variable = "缺失变量名" frequency = "缺失频数" percent = %nrstr("%缺失占比");
run;
以上为第一种方法;
下面用数组的方法进行实现。
/*找出缺失变量*/
data tmp11;
set tmp;
array arr1{*} _NUMERIC_ ;
array arr2{*} _CHARACTER_ ;
length variable $50;
do i = 1 to dim(arr1);
if missing(arr1(i)) then do;
variable =vname(arr1(i)); /*数值型缺失*/
output;
end;
end;
do j = 1to dim(arr2);
if missing(arr2(j)) then do;
variable = vname(arr2(j)); /*字符型缺失*/
output;
end;
end;
keep variable;
run;
/*统计缺失频数和占比*/
proc sql noprint;
select count(*) into : N from tmp;
create table miss as
select variable label = "缺失变量名",count(*) as frequency label = "缺失频数",
input(compress(put(calculated frequency / &N.,percent10.2),"%"),best32.) as percent label = %nrstr("%缺失占比")
from tmp11
group by variable;
quit;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07