sas单变量的特征分析
大炮,我有个烦恼,我领导最近老叫我单变量结合因变量分析,但是都是分段分析,我总是写proc sql然后group by ,但是这个过程好无聊啊,有木有什么新的代码,让我可以分析的快点啊。
最近写了个宏,刚好可以解决你这个问题,在上代码之前,先来个结果图
詹大炮
这个结果对于分析来说是不好的,因为这个结果没啥实际意义,说白了就是跟因变量没关系,但是这个图我们不是要来讲变量怎么有用,我们要介绍的是这段代码最后呈现的一个结果是怎样的。
代码:
%macro ChcAnalysis(DSin, DVVar, VarX, NBins, Method, DSChc);
proc sort data=&DSin;
by &VarX;
run;
Data temp;
set &DSin ;
by &VarX;
_Obs=_N_;
keep &DVVAr &VarX _Obs;
run;
proc sql noprint;
%if &Method=1 %then %do;
select count(&DVVar) into :N from temp;
select max(_Obs), min(_Obs) into :Vmax, :Vmin from temp;
%let BinSize=%sysevalf((&Vmax)/&Nbins);
%let LB_1=0;
%do i=1 %to %eval(&Nbins-1);
%let LB_&i=%sysevalf(&LB_1+(&i-1)*&BinSize);
%let UB_&i=%sysevalf(&&LB_&i + &BinSize);
select sum(&DVVar) , count(*) into :Sum_&i , :N_&i from temp
where _obs>=&&Lb_&i and _obs<&&Ub_&i;
%end;
%let LB_&NBins=%sysevalf(&LB_1+(&NBins-1)*&BinSize);
%let UB_&NBins=&Vmax;
select sum(&DVVar) , count(*) into :Sum_&i , :N_&i from temp
where _obs>=LB_&NBins and _obs<=UB_&NBins;
%end;
%else %do ;
select count(&DVVar) into :N from temp;
select max(&VarX), min(&VarX) into :Vmax, :Vmin from temp;
%let BinSize=%sysevalf((&Vmax-&Vmin)/&Nbins);
%let LB_1=&Vmin;
%do i=1 %to %eval(&Nbins-1);
%let LB_&i=%sysevalf(&LB_1+(&i-1)*&BinSize);
%let UB_&i=%sysevalf(&&LB_&i + &BinSize);
select sum(&DVVar) , count(*) into :Sum_&i , :N_&i from temp
where &VarX>=&&Lb_&i and &VarX<&&Ub_&i;
%end;
%let LB_&NBins=%sysevalf(&LB_1+(&NBins-1)*&BinSize);
%let UB_&NBins=&Vmax;
select sum(&DVVar) , count(*) into :Sum_&i , :N_&i from temp
where &VarX>=&&Lb_&i and &VarX<=&&UB_&i;
%end;
quit;
data &DSChc;
%do i=1 %to &NBins;
Bin=&i;
LowerBound=&&LB_&i;
UpperBound=&&UB_&i;
if (&&sum_&i =. ) then N_1=0; else N_1=&&Sum_&i;
if &&N_&i=. then BinTotal=0; else BinTotal=&&N_&i;
N_0 = BinTotal-N_1;
Percent_1=100*N_1/BinTotal;
Percent_0=100*N_0/BinTotal;
output;
%end;
Run;
proc datasets nodetails nolist library=work;
delete temp;
run;
quit;
%mend;
詹大炮
还是老样子,分段介绍。
01
% ChcAnalysis(DSin, DVVar, VarX, NBins, Method, DSChc);
DSin:填入的是原数据集;
DVVar:填入因变量,这里我们分析的是二元的因变量,所以因变量一定要是二元的,并且必须是数值的0,1。因为在代码中设定的就是这样子的,至于你问我为什么不能是字符,那是因为我还没能耐写字符的。
VarX:你要分析的变量(数值的哈)
NBins:分几段分析。结果的例子是分了5段;
Method:怎么分。1-等高度分,2-等宽度分。我的结果图那个是按2分的。
DSChc:结果数据集的输出名字。
02
proc sort data=&DSin;by &VarX;run;
Data temp;
set &DSin ;
by &VarX;
_Obs=_N_;
keep &DVVAr &VarX _Obs;
run;
将原数据集中的变量排序,后面的分组的时候要用到。然后保留要分析的变量在temp数据集中,产生变量_Obs,作为序号,这是等高度分析的时候要用的。等高度的意思就是每个区间的数量是一样的,等宽度的意思是,区间的的差值是一样的。两个不同的情况,在分析的时候,如果等宽的结果你觉得不是很明显可以分析的话,就换等高,任意切换哈。
temp的数据集是长这样子的:
_obs是观测的序号。
03
proc sql noprint;
%if &Method=1 %then %do;
select count(&DVVar) into :N from temp;
select max(_Obs), min(_Obs) into :Vmax, :Vmin from temp;
%let BinSize=%sysevalf((&Vmax)/&Nbins);
%let LB_1=0;
%do i=1 %to %eval(&Nbins-1);
%let LB_&i=%sysevalf(&LB_1+(&i-1)*&BinSize);
%let UB_&i=%sysevalf(&&LB_&i + &BinSize);
select sum(&DVVar) , count(*) into :Sum_&i , :N_&i from temp
where _obs>=&&Lb_&i and _obs<&&Ub_&i;
%end;
%let LB_&NBins=%sysevalf(&LB_1+(&NBins-1)*&BinSize);
%let UB_&NBins=&Vmax;
select sum(&DVVar) , count(*) into :Sum_&i , :N_&i from temp
where _obs>=LB_&i. and _obs<=UB_&i.;
%end;
%else %do ;
select count(&DVVar) into :N from temp;
select max(&VarX), min(&VarX) into :Vmax, :Vmin from temp;
%let BinSize=%sysevalf((&Vmax-&Vmin)/&Nbins);
%let LB_1=&Vmin;
%do i=1 %to %eval(&Nbins-1);
%let LB_&i=%sysevalf(&LB_1+(&i-1)*&BinSize);
%let UB_&i=%sysevalf(&&LB_&i + &BinSize);
select sum(&DVVar) , count(*) into :Sum_&i , :N_&i from temp
where &VarX>=&&Lb_&i and &VarX<&&Ub_&i;
%end;
%let LB_&NBins=%sysevalf(&LB_1+(&NBins-1)*&BinSize);
%let UB_&NBins=&Vmax;
select sum(&DVVar) , count(*) into :Sum_&i , :N_&i from temp
where &VarX>=&&Lb_&i and &VarX<=&&UB_&i;
%end;
quit;
我知道你肯定要说,这密密麻麻的% &*我不想看。但是你看下嘛,不难的,我介绍介绍给你看嘛。
首先这段代码需要分成两步来看,第一步是当我们的&Method=1 的情况执行do后面的程序,反之,则是当我们的&Method=2的时候的情况啦。
然后我们来讲&Method=1情况时执行的代码:
select count(&DVVar) into :N from temp;
select max(_Obs), min(_Obs) into :Vmax, :Vmin from temp;
第一个select赋值宏是算出全部的观测数。
第二个select是算出最大的那个序号,其实我个人觉得这步有点多 余,你想直接用n也可以的,只是我想跟&Method=2的思路一样,所以就没删。
%let BinSize=%sysevalf((&Vmax)/&Nbins);
%let LB_1=0;
%do i=1 %to %eval(&Nbins-1);
%let LB_&i=%sysevalf(&LB_1+(&i-1)*&BinSize);
%let UB_&i=%sysevalf(&&LB_&i + &BinSize);
select sum(&DVVar) , count(*) into :Sum_&i , :N_&i from temp
where _obs>=&&Lb_&i and _obs<&&Ub_&i;
%end;
BinSize因为是&Method=1,所以这里BinSize是区间的差值,这里有个宏函数%sysevalf就自己百度下用法吧,这里就不介绍了。%do i=1 %to %eval(&Nbins-1);这一步就开始循环,这里为什么只循环到倒数第二个呢,是因为倒数第一个直接就是剩下的全部,就不需要再区间限制了。
%let LB_&i=%sysevalf(&LB_1+(&i-1)*&BinSize);
%let UB_&i=%sysevalf(&&LB_&i + &BinSize);
这两步是产生这个分组的上下区间,然后用于后面的select语句中的where条件,把该区间的数量统计出来。
select sum(&DVVar) , count(*) into :Sum_&i , :N_&i from temp
where _obs>=&&Lb_&i and _obs<&&Ub_&i;
%end;
这个过程特别注意的就是sum(&DVVar),是用sum,这就是我一开始为什么说因变量是二元的,而且要是0,1的情况就是方便这里统计啦。
%let LB_&NBins=%sysevalf(&LB_1+(&NBins-1)*&BinSize);
%let UB_&NBins=&Vmax;
select sum(&DVVar) , count(*) into :Sum_&i , :N_&i from temp
where _obs>=LB_&i. and _obs<=UB_&i.;
%end;
这就是第四步啦,
%let LB_&NBins=%sysevalf(&LB_1+(&NBins-1)*&BinSize);
%let UB_&NBins=&Vmax;
产生最后的区间,这里的i是5了,其实我一直很不能理解到这步,为什么还可以输出i=5呢,不是i只循环到4吗?但是执行的时候就是这样子的,这个套路是仿照之前的等高度分变量区间的那个代码写的。
我还特地看了日志也循环了:
我觉得应该是sas的处理流程,在pdv层面应该可以解释,跪求大神在留言区解释。万分感激。
那么&Method=2的部分就留给你自己去看啦,还是&Method=1的那种套路,只是等区间变量等量而已。
04
data &DSChc;
%do i=1 %to &NBins;
Bin=&i;
LowerBound=&&LB_&i;
UpperBound=&&UB_&i;
if (&&sum_&i =. ) then N_1=0; else N_1=&&Sum_&i;
if &&N_&i=. then BinTotal=0; else BinTotal=&&N_&i;
N_0 = BinTotal-N_1;
Percent_1=100*N_1/BinTotal;
Percent_0=100*N_0/BinTotal;
output;
%end;
Run;
然后这部分就是以上产生的宏,拼接成结果数据集。这里应该注意的是,每循环一个,就是产生一条观测之后output到数据集,如此循环之后需知道i=&nbins为止。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25数据分析师,这一近年来炙手可热的职业,吸引了大量求职者的注意。凭借在大数据时代中的关键作用,数据分析师不仅需要具备处理数 ...
2024-12-25在当今数字化变革的浪潮中,数据分析师这一职业正迎来前所未有的发展机遇。回想我自己初入数据分析行业时,那种既兴奋又略显谨慎 ...
2024-12-25在当今信息爆炸的时代,数据已经像空气一样无处不在,而数据分析则是解锁这些信息宝藏的钥匙。数据分析的过程就像是一次探险,从 ...
2024-12-25在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19