京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SAS—基于熵的连续变量的离散化
今天介绍下整个程序逻辑及sas代码的详细介绍。
首先宏 %BinContVard调用了宏%CandSplits;然后宏%CandSplits又调用宏
%BestSplit、%GValue;最后通过宏%ApplyMap应用于数据集。
下表是%BinContVar的参数
%BinContVar(Dsin,IVVar,DVVar,MMax,Acc,DsVarMap)
参数
描述
DSin
输入数据集
IVVar
连续自变量
DVVar
二元因变量
MMax
设定的分组数量
Acc
最小分段的百分比规模
DsVarMap
包含映射规则的输出数据集
首先,将初始数据集等距分为10段,然后把这些段数看作名义变量,基于熵方差利用最优二元分类法找出最优分群。
宏%bincontvar的主要是作用是连续变量的最优分段,嵌套了%CandSplits,这个宏的作用是对分段后的数据集在进行分群,并选出最优分群;宏%CandSplits嵌套了%BestSplits和%GValue两个宏:宏%BestSplits是找出最优分群,宏%GValue计算熵方差。
/*连续变量的最优分段*/
/*
1.找出连续变量的最大最小值;
2.对连续变量进行等距分段,并把这些段数看成名义变量;
3.对2所分段数进行最优分群,直到所设置的分群数
*/
%macro BinContVar(DSin, IVVar, DVVar, MMax, Acc, DSVarMap);
%local VarMax VarMin;
proc sql noprint;
select min(&IVVar), max(&IVVar) into :VarMin, :VarMax from &DSin;
quit;
%local Mbins i MinBinSize;
%let Mbins=%sysfunc(int(%sysevalf(1.0/&Acc)));/*设置等距分段数*/
%let MinBinSize=%sysevalf((&VarMax-&VarMin)/&Mbins);/*每段的长度*/
/*定义每段后每段的最大最小值*/
%do i=1 %to %eval(&Mbins);
%local Lower_&i Upper_&i;
%let Upper_&i = %sysevalf(&VarMin + &i * &MinBinSize);
%let Lower_&i = %sysevalf(&VarMin + (&i-1)*&MinBinSize);
%end;
%let Lower_1 = %sysevalf(&VarMin-0.0001);
%let Upper_&Mbins=%sysevalf(&VarMax+0.0001);
/*对连续变量 income 进行等距分段*/
data Temp_DS;
set &DSin;
%do i=1 %to %eval(&Mbins-1);
if &IVVar>=&&Lower_&i and &IVVar < &&Upper_&i Then Bin=&i;
%end;
if &IVVar>=&&Lower_&Mbins and &IVVar <= &&Upper_&MBins Then Bin=&MBins;
run;
/*计算出等距分段的每段最值*/
data temp_blimits;
%do i=1 %to %Eval(&Mbins-1);
Bin_LowerLimit=&&Lower_&i;
Bin_UpperLimit=&&Upper_&i;
Bin=&i;
output;
%end;
Bin_LowerLimit=&&Lower_&Mbins;
Bin_UpperLimit=&&Upper_&Mbins;
Bin=&Mbins;
output;
run;
proc sort data=temp_blimits;
by Bin;
run;
/*找出每段分段对应的二元自变量每个类别的频数*/
proc freq data=Temp_DS noprint;
table Bin*&DVvar /out=Temp_cross;
table Bin /out=Temp_binTot;
run;
proc sort data=temp_cross;
by Bin;
run;
proc sort data= temp_BinTot;
by Bin;
run;
data temp_cont;
merge Temp_cross(rename=count=Ni2 )temp_BinTot(rename=Count=total) temp_BLimits ;/*Ni2:每个分段下对应类别的频数 total:每个分段下的总频数*/
by Bin;
Ni1=total-Ni2;
PDV1=bin;
label Ni2= total=;
if Ni1=0 then output;
else if &DVVar=1 then output;
drop percent &DVVar;
run;
data temp_contold;
set temp_cont;
run;
/*合并所有含有ni1、ni2 、total= 0 的分段*/
proc sql noprint;
%local mx;
%do i=1 %to &Mbins;
select count(*) into : mx from Temp_cont where Bin=&i;
%if (&mx>0) %then %do;
select Ni1, Ni2, total, bin_lowerlimit, bin_upperlimit into
:Ni1,:Ni2,:total, :bin_lower, :bin_upper
from temp_cont where Bin=&i;
%if (&i=&Mbins) %then %do;
select max(bin) into :i1 from temp_cont where Bin<&Mbins;
%end;
%else %do;
select min(bin) into :i1 from temp_cont where Bin>&i;
%end;
%if (&Ni1=0) or (&Ni2=0) or (&total=0) %then %do;
update temp_cont set
Ni1=Ni1+&Ni1 ,
Ni2=Ni2+&Ni2 ,
total=total+&Total
where bin=&i1;
%if (&i<&Mbins) %then %do;
update temp_cont set Bin_lowerlimit = &Bin_lower where bin=&i1;
%end;
%else %do;
update temp_cont set Bin_upperlimit = &Bin_upper where bin=&i1;
%end;
delete from temp_cont where bin=&i;
%end;
%end;
%end;
quit;
proc sort data=temp_cont;
by pdv1;
run;
%local m;
/*将所有类别定义为宏变量m*/
data temp_cont;
set temp_cont;
i=_N_;
Var=bin;
Bin=1;
call symput("m", compress(_N_));
run;
%local Nbins ;
%let Nbins=1;
%DO %WHILE (&Nbins <&MMax);
/*从所有候选分群中根据熵选择最优分群*/
%CandSplits(temp_cont, Temp_Splits);
Data Temp_Cont;
set Temp_Splits;
run;
%let NBins=%eval(&NBins+1);
%end;
data temp_Map1 ;
set temp_cont(Rename=Var=OldBin);
drop Ni2 PDV1 Ni1 i ;
run;
proc sort data=temp_Map1;
by Bin OldBin ;
run;
data temp_Map2;
retain LL 0 UL 0 BinTotal 0;
set temp_Map1;
by Bin OldBin;
Bintotal=BinTotal+Total;
if first.bin then do;
LL=Bin_LowerLimit;
BinTotal=Total;
End;
if last.bin then do;
UL=Bin_UpperLimit;
output;
end;
drop Bin_lowerLimit Bin_upperLimit Bin OldBin total;
run;数据分析师培训
proc sort data=temp_map2;
by LL;
run;
data &DSVarMap;
set temp_map2;
Bin=_N_;
run;
%mend;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24