SAS—基于熵的连续变量的离散化
今天介绍下整个程序逻辑及sas代码的详细介绍。
首先宏 %BinContVard调用了宏%CandSplits;然后宏%CandSplits又调用宏
%BestSplit、%GValue;最后通过宏%ApplyMap应用于数据集。
下表是%BinContVar的参数
%BinContVar(Dsin,IVVar,DVVar,MMax,Acc,DsVarMap)
参数
描述
DSin
输入数据集
IVVar
连续自变量
DVVar
二元因变量
MMax
设定的分组数量
Acc
最小分段的百分比规模
DsVarMap
包含映射规则的输出数据集
首先,将初始数据集等距分为10段,然后把这些段数看作名义变量,基于熵方差利用最优二元分类法找出最优分群。
宏%bincontvar的主要是作用是连续变量的最优分段,嵌套了%CandSplits,这个宏的作用是对分段后的数据集在进行分群,并选出最优分群;宏%CandSplits嵌套了%BestSplits和%GValue两个宏:宏%BestSplits是找出最优分群,宏%GValue计算熵方差。
/*连续变量的最优分段*/
/*
1.找出连续变量的最大最小值;
2.对连续变量进行等距分段,并把这些段数看成名义变量;
3.对2所分段数进行最优分群,直到所设置的分群数
*/
%macro BinContVar(DSin, IVVar, DVVar, MMax, Acc, DSVarMap);
%local VarMax VarMin;
proc sql noprint;
select min(&IVVar), max(&IVVar) into :VarMin, :VarMax from &DSin;
quit;
%local Mbins i MinBinSize;
%let Mbins=%sysfunc(int(%sysevalf(1.0/&Acc)));/*设置等距分段数*/
%let MinBinSize=%sysevalf((&VarMax-&VarMin)/&Mbins);/*每段的长度*/
/*定义每段后每段的最大最小值*/
%do i=1 %to %eval(&Mbins);
%local Lower_&i Upper_&i;
%let Upper_&i = %sysevalf(&VarMin + &i * &MinBinSize);
%let Lower_&i = %sysevalf(&VarMin + (&i-1)*&MinBinSize);
%end;
%let Lower_1 = %sysevalf(&VarMin-0.0001);
%let Upper_&Mbins=%sysevalf(&VarMax+0.0001);
/*对连续变量 income 进行等距分段*/
data Temp_DS;
set &DSin;
%do i=1 %to %eval(&Mbins-1);
if &IVVar>=&&Lower_&i and &IVVar < &&Upper_&i Then Bin=&i;
%end;
if &IVVar>=&&Lower_&Mbins and &IVVar <= &&Upper_&MBins Then Bin=&MBins;
run;
/*计算出等距分段的每段最值*/
data temp_blimits;
%do i=1 %to %Eval(&Mbins-1);
Bin_LowerLimit=&&Lower_&i;
Bin_UpperLimit=&&Upper_&i;
Bin=&i;
output;
%end;
Bin_LowerLimit=&&Lower_&Mbins;
Bin_UpperLimit=&&Upper_&Mbins;
Bin=&Mbins;
output;
run;
proc sort data=temp_blimits;
by Bin;
run;
/*找出每段分段对应的二元自变量每个类别的频数*/
proc freq data=Temp_DS noprint;
table Bin*&DVvar /out=Temp_cross;
table Bin /out=Temp_binTot;
run;
proc sort data=temp_cross;
by Bin;
run;
proc sort data= temp_BinTot;
by Bin;
run;
data temp_cont;
merge Temp_cross(rename=count=Ni2 )temp_BinTot(rename=Count=total) temp_BLimits ;/*Ni2:每个分段下对应类别的频数 total:每个分段下的总频数*/
by Bin;
Ni1=total-Ni2;
PDV1=bin;
label Ni2= total=;
if Ni1=0 then output;
else if &DVVar=1 then output;
drop percent &DVVar;
run;
data temp_contold;
set temp_cont;
run;
/*合并所有含有ni1、ni2 、total= 0 的分段*/
proc sql noprint;
%local mx;
%do i=1 %to &Mbins;
select count(*) into : mx from Temp_cont where Bin=&i;
%if (&mx>0) %then %do;
select Ni1, Ni2, total, bin_lowerlimit, bin_upperlimit into
:Ni1,:Ni2,:total, :bin_lower, :bin_upper
from temp_cont where Bin=&i;
%if (&i=&Mbins) %then %do;
select max(bin) into :i1 from temp_cont where Bin<&Mbins;
%end;
%else %do;
select min(bin) into :i1 from temp_cont where Bin>&i;
%end;
%if (&Ni1=0) or (&Ni2=0) or (&total=0) %then %do;
update temp_cont set
Ni1=Ni1+&Ni1 ,
Ni2=Ni2+&Ni2 ,
total=total+&Total
where bin=&i1;
%if (&i<&Mbins) %then %do;
update temp_cont set Bin_lowerlimit = &Bin_lower where bin=&i1;
%end;
%else %do;
update temp_cont set Bin_upperlimit = &Bin_upper where bin=&i1;
%end;
delete from temp_cont where bin=&i;
%end;
%end;
%end;
quit;
proc sort data=temp_cont;
by pdv1;
run;
%local m;
/*将所有类别定义为宏变量m*/
data temp_cont;
set temp_cont;
i=_N_;
Var=bin;
Bin=1;
call symput("m", compress(_N_));
run;
%local Nbins ;
%let Nbins=1;
%DO %WHILE (&Nbins <&MMax);
/*从所有候选分群中根据熵选择最优分群*/
%CandSplits(temp_cont, Temp_Splits);
Data Temp_Cont;
set Temp_Splits;
run;
%let NBins=%eval(&NBins+1);
%end;
data temp_Map1 ;
set temp_cont(Rename=Var=OldBin);
drop Ni2 PDV1 Ni1 i ;
run;
proc sort data=temp_Map1;
by Bin OldBin ;
run;
data temp_Map2;
retain LL 0 UL 0 BinTotal 0;
set temp_Map1;
by Bin OldBin;
Bintotal=BinTotal+Total;
if first.bin then do;
LL=Bin_LowerLimit;
BinTotal=Total;
End;
if last.bin then do;
UL=Bin_UpperLimit;
output;
end;
drop Bin_lowerLimit Bin_upperLimit Bin OldBin total;
run;数据分析师培训
proc sort data=temp_map2;
by LL;
run;
data &DSVarMap;
set temp_map2;
Bin=_N_;
run;
%mend;
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21