热线电话:13121318867

登录
首页精彩阅读解读工业大数据的来源、实施项目的关键问题
解读工业大数据的来源、实施项目的关键问题
2017-04-03
收藏

解读工业大数据的来源、实施项目的关键问题

近年来,随着德国工业4.0和美国工业互联网为代表的新工业革命深入发展,以及“中国制造2025”、“互联网+”行动计划与“促进大数据发展行动纲要”的颁布实施,工业大数据得到了越来越多的关注。这里分享一下我们的思考与实践。

1、工业大数据三大来源

企业信息系统、装备物联网和企业外部互联网是工业大数据的三大来源:

企业信息系统存储了高价值密度的核心业务数据。上世纪60年代以来信息技术加速应用于工业领域,形成了产品生命周期管理(PLM)、企业资源规划(ERP)、供应链管理(SCM)和客户关系管理(CRM)等企业信息系统。这些系统中积累的产品研发数据、生产制造数据、物流供应数据以及客户服务数据,存在于企业或产业链内部,是工业领域传统数据资产。

近年来物联网技术快速发展,装备物联网成为工业大数据新的、增长最快的来源,它实时自动采集了生产设备和交付产品的状态与工况数据。一方面,机床等生产设备物联网数据为智能工厂生产调度、质量控制和绩效管理提供了实时数据基础;另一方面,2012年美国通用电气公司提出的工业大数据(狭义的),专指装备使用过程中由传感器采集的大规模时间序列数据,包括装备状态参数、工况负载和作业环境等信息,可以帮助用户提高装备运行效率,拓展制造服务。

当前互联网与工业深度融合,企业外部互联网已成为工业大数据不可忽视的来源。本世纪初,日本企业就开始利用互联网数据分析获取用户的产品评价,时至今日,小米手机利用社交媒体数据成功实现产品创新研发。此外,外部互联网还存在着海量的“跨界”数据,比如影响装备作业的气象数据、影响产品市场预测的宏观经济数据、影响企业生产成本的环境法规数据……

2、工业大数据实施的关键问题

数据质量、多源关联和系统集成是工业大数据实施的关键问题:

拥有大数据不是目的,发掘其价值才是关键。由企业信息化数据、装备物联网数据和外部互联网数据汇聚而成的工业大数据,蕴藏着巨大价值。例如,通过分析用户使用数据改进产品,通过分析现场测量数据提高工件加工水平,通过工况数据进行产品健康管理等。

笔者认为实施工业大数据项目需要关注以下3个关键问题:

(1)数据质量控制问题

原始数据(生数据)质量决定分析结果的质量。企业信息系统数据质量仍然存在问题,例如2014年某大型机车企业ERP系统中近20%物料存在“一物多码”问题。装备物联网数据质量堪忧,某大型制造企业1个月的状态工况数据中,无效工况(如盾构机传回了工程车工况)、重名工况(同一状态工况使用不同名字)、时标混乱(当前时间错误或时标对不齐)等数据质量问题约30%。

(2)多源数据关联问题

层次化的物料表(Bill Of Material, BOM)定义了企业信息系统数据的核心语义结构。针对跨生命周期的研制BOM和实例BOM间结构失配问题,我们提出了中性BOM模型,并以此为核心,向前关联设计制造BOM,向后关联服务保障BOM,形成星型结构,极大地降低了数据关联的复杂度。同时,针对装备物联网数据和外部互联网数据,可以根据其绑定的物理对象(零部件或产品)与相应的BOM节点相关联。从而以BOM为桥梁,关联3个不同来源的工业大数据。

(3)大数据系统集成问题

工业大数据其来源更加广泛,并且装备物联网数据(半结构化数据)和外部互联网数据(非结构化数据)都要与企业信息系统(结构化数据)进行集成,因此要重构数据支撑平台,甚至替换“旧”系统。

3、工业大数据实施工程案例

工业大数据分析提升工程装备服务保障水平,这里分享两个工程案例:

案例1、工业大数据提供故障分析新手段

液压系统是工程机械的关键部件。2013年我们发现液压系统的油缸密封套腐蚀故障数量异常。于是依据企业信息系统记录的液压系统维修历史数据,通过比对相关状态工况数据(装备物联网数据),搜索推荐与故障车辆关系密切的工况,发现车辆油缸换向频率的波动幅度与这些故障高度相关。

进一步,引入互联网上的行政区划数据和历年工程建设数据(外部互联网数据)后,发现2012~2013年期间这些典型故障均发生在沿海省份,从而推断出盐雾环境是导致密封套腐蚀故障的主要诱因。

案例2、工业大数据提升备件需求预测精度

随着工程装备增量市场增长乏力,以维修保障为主的存量市场成为企业盈利新的增长点。我们利用了企业信息系统中的备件销售订单、采购订单和备件库存状态数据,以及工程物联网采集到的工况数据和外部互联网数据(如每个省的GDP,建筑、交通等规划数据)。

针对30个省市区进行了备件需要预测,平均预测精度为82%,每旬备件需求预测误差在5件或真实值的20%以内。库存水平控制在一个较低的稳定水平,仅为原来库存水平的48%。同时,因为考虑到了20天的配货周期,基于预测的补货策略可以保证现货满足率,消除紧急临时订单。如果按备件库存占有资金1亿元计算,可节约库存资金占用5000万元。

工业大数据是实现智能制造的基础原料,是提升工业生产力、竞争力、创新力的关键要素。然而必须看到,工业大数据是一个正在发展的学科领域,其内涵外延、模型理论、技术方法及其实施策略等还有待发展与创新。唯有结合中国国情认真实践,才能走出中国工业大数据自主之路,实现制造强国的战略目标。


数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询