京公网安备 11010802034615号
经营许可证编号:京B2-20210330
关于缺失统计函数cmiss、nmiss中的小细节
在数据清理中统计缺失变量的缺失的时候,我们经常会用到cmiss函数和nmiss函数,这两者都是用来对缺失个数进行统计,两者区别就在于前者既能用于数值型也能用于字符型,而nmiss则只能用于数值型。
在使用这两个函数的过程中,我们往往会发现在统计缺失个数时候,经常出现实际计算出来的值要大于缺失值的个数,这是为什么呢?
举个简单的例子:
data tmp;
v1=.;v2='';x=3;output;
v1=1;v2='A';x=2;output;
v1=3;v2='';x=.;output;
v1=.;v2='B';x=2;output;
run;
我们得到四行数据,如下所示:
接下来用cmiss函数进行行缺失个数的统计:
data tmp1;
set tmp;
sum_miss=cmiss(of _all_);
run;
最终得到如下结果:
我们发现sum_miss的每一行值都比实际值要大1,为了了解这个过程,我们来通过put语句展示一下过程:
data tmp1;
set tmp;
put _all_;
sum_miss=cmiss(of _all_);
run;
查看日志:
我们发现在统计行缺失时,由于使用的_all_,所以把sum_miss变量也包含进去了,所以才会产生如上结果。
那么为了避免出现这种结果,我们可以用两种办法:
第一种:对sum_miss赋值,例如:
data tmp1;
set tmp;
sum_miss = 0;
sum_miss=cmiss(of _all_);
run;
第二种:将变量列出来,例如:
data tmp1;
set tmp;
sum_miss=cmiss(v1,v2,x);
run;
但是通常情况下,我们还是习惯用第一种方法,因为有时候变量太多,我们又不希望把他们都列出来,所以喜欢采用_all_来表示所有变量。
有童鞋也许会问了,如果我变量很多,但是我又只想对一部分变量进行行缺失统计,那么我该怎么做呢?
方法也很多:
例如可以选择第二种方法,只是需要将你要选择的那些变量用宏变量把他们包含成一列:sum_miss = cmiss(of ¯o_var.);其中宏变量macro_var = v1 v2 x;。
例如可以选择第一种方法,只是在set数据集时,将需要的都keep,前提还是需要将他们用宏变量包含城一列。
等等,根据具体情况,只要灵活结合宏,往往我们都能得到事半功倍的效果。
另外使用cmiss还要一个地方需要注意:
在将cmiss与%sysfunc结合使用时,需要注意对于宏变量是缺失的,我们要用(.)来表示,而不能用空格来表示,例如:
%let a = ;
%let b = hello;
%let c = %sysfunc(cmiss(&a.,&b.));
%put c = &c.;
我们可以看到日志中如下所示:
虽然最终得到了正确的结果,但是程序还是会报错。
那么为了消除这个error,我们需要在宏变量后面再加上一个点号,如下所示:
%let a = ;数据分析师培训
%let b = hello;
%let c = %sysfunc(cmiss(&a..,&b..));
%put c = &c.;
最终在日中中,我们会发现这个error已经去掉了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24