
sas输出基尼方差,F检验
有时候,我们在建模前期会有一个变量探索的单变量与因变量的数据分析报告,但其实,不同的数据形式有不同的指标来衡量变量与因变量的解释能力
今天的代码介绍的就是单变量与因变量之间的基尼方差,F检验的输出,你会说那proc reg中就有p值的输出啊,为什么要自己写。我个人是觉得proc reg是针对线性回归的,但是我们今天用到的因变量依旧还是二元的分类变量,所以就用我自己写到啦。
01
基尼方差
基尼方差被定义为衡量以下三种情况下变量之间的关联性指标:
1、一个连续变量和一个名字或顺序变量。
2、两个名字变量。
3、两个顺序变量。
这里介绍一个连续变量以及一个名义变量x的情况。介绍之前先明白几个符号的由来
基尼方差可以定义为:
G=1-SSE/STD
02
F检验
F检验衡量的是一个连续变量和一个名义变量之间的关联性,其中,谁是因变量不重要,该检验对两种情况都有效,F检验的统计量定义为:
F=MSTR/MSE
如果x是二元变量,并用0,1表示,F值及其相关联的p值可以用线性回归模型进行计算,模型中的y作为因变量,x作为唯一的自变量,用线性回归计算出来的f值可以用p值进行解释。这里你肯定你懵逼,你这不是打脸吗,说好y是二元的。因为我这部分是只有y和x两个变量,所以谁做因变量都无所谓。p值是可以建立模型的概率,及变量x和y之间无关联的概率。数据分析师培训
终于可以贴代码了!!!
%let DSin=test.SCORE_TOTAL_LIST_TEST_4;
%let Xvar=customer_status;
%let YVar=var1;
%macro CalcGrF(DSin, Xvar, YVar, M_Gr, M_Fstar, M_Pvalue);
proc freq data=&DSin noprint ;
tables &XVar /missing out=Temp_Cats;
run;
Data _null_;
retain N 0;
set Temp_Cats;
N=N+count;
call symput ("X_" || left(_N_), compress(&XVar));
call symput ("n_" || left(_N_), left(count));
call symput ("K", left(_N_));
call symput ("N", left(N));
Run;
proc sql noprint;
select avg(&YVar) into :Ybar from &DSin;
%local i;
%do i=1 %to &K;
select avg(&YVar) into :Ybar_&i
from &DSin where &XVar = "&&X_&i";
%end;
select var(&YVar) into: SSTO from &DSin;
%let SSTO=%sysevalf(&SSTO *(&N-1));
%let SSR=0;
%let SSE=0;
%do i=1 %to &K;
select var(&YVar) into: ssei
from &DSin where &Xvar="&&X_&i";
%let SSE=%sysevalf(&SSE + &ssei * (&&n_&i - 1)) ;
%let SSR=%sysevalf(&SSR+ &&n_&i * (&&Ybar_&i - &Ybar)*(&&Ybar_&i - &Ybar));
%end;
quit;
%let MSR=%sysevalf(&SSR/(&K-1));
%let MSE=%sysevalf(&SSE/(&N-&K));
%let M_Gr=%Sysevalf(1-(&SSE/&SSTO));
%let M_Fstar=%sysevalf(&MSR/&MSE);
%let M_PValue=%sysevalf(%sysfunc(probf(&M_Fstar,&K-1,&N-&K)));
data result;
M_Gr=&M_Gr.;
M_Fstar=&M_Fstar.;
M_PValue=&M_PValue.;
run;
proc datasets library=work nolist;
delete temp_cats;
run; quit;
%mend;
%CalcGrF(DSin=&DSin., Xvar=&Xvar., YVar=&YVar.);
结果如下:
这个结果显示的是:p值很高,没有什么关联性。具体的解释也可以自行百度哈
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14