
sas输出基尼方差,F检验
有时候,我们在建模前期会有一个变量探索的单变量与因变量的数据分析报告,但其实,不同的数据形式有不同的指标来衡量变量与因变量的解释能力
今天的代码介绍的就是单变量与因变量之间的基尼方差,F检验的输出,你会说那proc reg中就有p值的输出啊,为什么要自己写。我个人是觉得proc reg是针对线性回归的,但是我们今天用到的因变量依旧还是二元的分类变量,所以就用我自己写到啦。
01
基尼方差
基尼方差被定义为衡量以下三种情况下变量之间的关联性指标:
1、一个连续变量和一个名字或顺序变量。
2、两个名字变量。
3、两个顺序变量。
这里介绍一个连续变量以及一个名义变量x的情况。介绍之前先明白几个符号的由来
基尼方差可以定义为:
G=1-SSE/STD
02
F检验
F检验衡量的是一个连续变量和一个名义变量之间的关联性,其中,谁是因变量不重要,该检验对两种情况都有效,F检验的统计量定义为:
F=MSTR/MSE
如果x是二元变量,并用0,1表示,F值及其相关联的p值可以用线性回归模型进行计算,模型中的y作为因变量,x作为唯一的自变量,用线性回归计算出来的f值可以用p值进行解释。这里你肯定你懵逼,你这不是打脸吗,说好y是二元的。因为我这部分是只有y和x两个变量,所以谁做因变量都无所谓。p值是可以建立模型的概率,及变量x和y之间无关联的概率。数据分析师培训
终于可以贴代码了!!!
%let DSin=test.SCORE_TOTAL_LIST_TEST_4;
%let Xvar=customer_status;
%let YVar=var1;
%macro CalcGrF(DSin, Xvar, YVar, M_Gr, M_Fstar, M_Pvalue);
proc freq data=&DSin noprint ;
tables &XVar /missing out=Temp_Cats;
run;
Data _null_;
retain N 0;
set Temp_Cats;
N=N+count;
call symput ("X_" || left(_N_), compress(&XVar));
call symput ("n_" || left(_N_), left(count));
call symput ("K", left(_N_));
call symput ("N", left(N));
Run;
proc sql noprint;
select avg(&YVar) into :Ybar from &DSin;
%local i;
%do i=1 %to &K;
select avg(&YVar) into :Ybar_&i
from &DSin where &XVar = "&&X_&i";
%end;
select var(&YVar) into: SSTO from &DSin;
%let SSTO=%sysevalf(&SSTO *(&N-1));
%let SSR=0;
%let SSE=0;
%do i=1 %to &K;
select var(&YVar) into: ssei
from &DSin where &Xvar="&&X_&i";
%let SSE=%sysevalf(&SSE + &ssei * (&&n_&i - 1)) ;
%let SSR=%sysevalf(&SSR+ &&n_&i * (&&Ybar_&i - &Ybar)*(&&Ybar_&i - &Ybar));
%end;
quit;
%let MSR=%sysevalf(&SSR/(&K-1));
%let MSE=%sysevalf(&SSE/(&N-&K));
%let M_Gr=%Sysevalf(1-(&SSE/&SSTO));
%let M_Fstar=%sysevalf(&MSR/&MSE);
%let M_PValue=%sysevalf(%sysfunc(probf(&M_Fstar,&K-1,&N-&K)));
data result;
M_Gr=&M_Gr.;
M_Fstar=&M_Fstar.;
M_PValue=&M_PValue.;
run;
proc datasets library=work nolist;
delete temp_cats;
run; quit;
%mend;
%CalcGrF(DSin=&DSin., Xvar=&Xvar., YVar=&YVar.);
结果如下:
这个结果显示的是:p值很高,没有什么关联性。具体的解释也可以自行百度哈
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09