数据分析和数据处理服务在烟草行业的应用
数据分析和数据处理服务在烟草行业的应用,烟草统计分析作为统计工作重要内容组成,对烟草经济现象各关联面的重大问题和具体问题,深入分析、剖析原因,做好科学地分析推断,提出预见性的决策意见,是烟草统计“全面做好卷烟上水平的统计信息支撑”的关键性工作环节,必须予以重视与加强。作为基层烟草企业应该把统计分析工作当作一项基础性的重要工作来抓好抓实,加强市场信息收集和统计分析工作,
转变观念,注重实践,为统计分析夯实思想基础。开展卷烟零售市场销售管理以及零售客户卷烟经营活动的数据调查活动,营销人员应转变观念,树立求真务实的工作作风。必须从当前卷烟零售市场的实际情况出发,以卷烟零售客户个体为单位,严格规范地开展数据统计分析等实践活动,真正将数据统计分析以及信息收集整理工作纳入到整个卷烟经营企业重要工作中来。通过各类数据统计分析和信息情况反馈及时了解,全面衡量整个卷烟零售市场消费需求趋势和发展动向,为企业领导层制定各类营销政策及科学举措提供重要依据。
拓宽数据资料采集面,为统计分析提供全面的数据来源。随着行业的改革发展,
要全面反映和揭示行业经济现象的内在联系及行业发展的客观规律,就必须掌握多层面、多角度的统计数据,数据掌握得越全面,统计分析和推断的科学性就越强。数据资料采集的方法可以分为两类,一是资料调查法,二是实地调查法。资料调查法具有省时、省人工、省费用的特点,分为企业内部资料调查和企业外部资料调查。内部资料可以从企业内部统计资料、企业财务资料及其他内部资料中查询,这种调查方法。外部资料可以从政府机构、统计局专业机构以及书籍、杂志等资料中查询。实地调查法,具有针对性强、适用面广、材料真实的特点,包括采取实地问卷调查、现场观察、电话调查、邮寄调查、互联网调查等。
提高数据资料的真实性,为统计分析提供真实依据。统计分析是一个系统收集和分析各种有关市场信息资料的过程,其最终目的就是准确、完整、及时地反映市场状况,提示市场发展趋势和规律,为市场营销决策提供依据。统计分析质量的好坏,主要取决于采集的数据资料真实性有多少,数据资料真实性越高,写出来的统计分析质量也就越高。要提高数据资料的真实性,你所采集的数据必须要具备准确性、完整性、及时性的特点。其中准确性是第一位的,它决定了数据的有效性和价值的高低,同时也是统计分析质量好坏的关键性因素和重要标志。不准确的市场调查数据结果是“
失真”的,而由失真的数据组成的统计分析也会失去真正的意义。缺乏完整性的数据结果是残缺不全的,结果也不能准确地反映市场的实际状况,也将导致撰写出来的统计分析陷于片面化。由于市场的瞬息万变,市场调查数据结果的及时性也显得非常重要,只有及时地反映市场现状,准确性和完整性才有意义。
灵活运用多种统计分析方法,提高统计分析的全面性。统计分析一般有定性分析法、定量分析性、定性与定量相结合分析法三种,我们可以结合具体实际情况,灵活运用一种,或是几种方法一起合并运用。定性与定量分析两种方法是相互补充的,定性分析时需要定量的资料来进行说明和补充。在进行定性分析时,要掌握基本的逻辑思维,对于事物的认识要从简单到复杂,从特殊到一般,从偶然到必然,从现象到本质。坚持辨证的观点、发展的观点,从事物的发展变化中观察问题,从事物的相互依存、相互制约中来分析问题,对统计分析具有重要的指导意义。在进行定量分析时,要运用统计学中论述的方法对辖区卷烟销售的数量表现,包括卷烟消费水平、速度、结构比例、事物之间的联系等进行分析。如,对比分析法、综合评价分析法、结构分析法、平衡分析法、动态分析法、因素分析法、相关分析法等。无论采取何种方法进行统计分析时,都需要我们卷烟经营企业的营销人员能够带着任务和重点去开展工作,真正使得统计分析和信息反馈等工作更具全面性、规范性和目的性。
烟草统计分析作为统计工作重要内容组成,对烟草经济现象各关联面的重大问题和具体问题,深入分析、剖析原因,做好科学地分析推断,提出预见性的决策意见,是烟草统计“全面做好卷烟上水平的统计信息支撑”的关键性工作环节,必须予以重视与加强。作为基层烟草企业应该把统计分析工作当作一项基础性的重要工作来抓好抓实,加强市场信息收集和统计分析工作,正确运用和科学分析卷烟零售市场的消费需求变化与发展趋势,时时掌握市场动态,为精准营销、品牌培育和优质服务提供市场依据,为全面做好卷烟上水平提供强有力的统计信息支撑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31