热线电话:13121318867

登录
首页精彩阅读R 语言分析《釜山行》人物关系
R 语言分析《釜山行》人物关系
2017-04-06
收藏
《釜山行》是一部丧尸灾难片,其人物少、关系简单,非常适合我们学习文本处理。这个项目将介绍共现在关系中的提取,使用 R 编写代码实现对《釜山行》文本的人物关系进行分析

使用到的R包

library(rvest)
library(jiebaR)
library(stringr)
library(readr)
library(tidyverse)
library(network)
library(sna)
library(ggnetwork)
library(igraph)

抓取《釜山行》剧本

url='http://labfile.oss.aliyuncs.com/courses/677/busan.txt'
text=read_html(url)%>%html_text()
#对剧本进行分段
spltext=str_split(text,'\r\n\r\n \r\n\r\n')
names(spltext) = 'spltextname'
subtext=spltext$spltextname

人物关系挖掘

思路:若两个人物出现在同一段则对其权重加1,每段中对应关系出现多少次加多少次

n=length(spltext$spltextname)
data=vector('list',n)
cutter = worker('mix')
for(i in 1:n) data[[i]] = cutter[subtext[i]][which(cutter[subtext[i]] %in% iden)]
#which(cutter[subtext1] %in% iden)
weidata=data.frame(t(combn(iden,2)))
names(weidata)=c('name1','name2')
weiname=rep(0,136)
for(i in 1:136) weiname[i]=paste(weidata$name1[i],weidata$name2[i],sep = '--')
weidata$weiname=weiname
weidata$weight = rep(0,136)
for(i in 1:72){
    if(length(data[[i]]) != 0){
      test=as.data.frame(table(paste(expand.grid(data[[i]],data[[i]])$Var1,
                              expand.grid(data[[i]],data[[i]])$Var2,sep = '--')))
      test$Var1=as.vector(test$Var1)
      test$Freq=test$Freq/max(test$Freq)
      id1=which(test$Var1 %in% weidata$weiname)
      id2=which( weidata$weiname %in% test$Var1)
      weidata$weight[id2]=weidata$weight[id2]+test$Freq[id1]
    }
}


结果:

weight=0说明两人没有过交际,weight越大关系越密切

绘制人物关系网络图

taltext=as.data.frame(table(cutter[subtext][which(cutter[subtext] %in% iden)]))
taltext$Var1=as.vector(taltext$Var1)
ind3=rep(0,17)
for(i in 1:17) ind3[i] = taltext$Freq[which(taltext$Var1[i] == iden)]
weidata1 = weidata[which(weidata$weight !=0),]

g1=graph.data.frame(weidata1[,-3], directed = F)
op=par(mar=c(0,0,0,0))
plot(g1, edge.width = E(g1)$weight,
     vertex.size=rank(ind3),
     layout=layout.fruchterman.reingold,
     vertex.color=  ind3,
     vertex.label.cex=0.75,
     vertex.label.color='blue'
     )
par(op)

使用ggplot2风格

n=fortify(g1)
ggplot(n, aes(x = x, y = y, xend = xend, yend = yend)) +
  geom_edges(linetype = 2, color = "grey50",curvature = 0.1) +
  geom_nodes(aes(color =  vertex.names, size =  weight)) +
  geom_nodelabel_repel(aes(color = vertex.names, label = vertex.names),
                       fontface = "bold", box.padding = unit(1, "lines")) +
  theme(legend.position='none',
        axis.text = element_blank(),
        axis.title = element_blank(),
  panel.background = element_rect(fill = "grey25"),
  panel.grid = element_blank()
  )

云词图(文本挖掘必备)

require(RColorBrewer)
library(wordcloud)

#这里的停词是把底层的stop_words.utf-8改为txt格式,改之前先备份
wk<-worker('mix',
  stop_word="D:/Program Files/R/R-3.3.2/library/jiebaRD/dict/stop_words.txt")
textda=wk[subtext]
datext=as.data.frame(table(textda))
datext$textda=as.vector(datext$textda)

textdata=arrange(datext,desc(Freq))
textdata1=textdata[which(textdata$Freq>5),]

pal2 <- brewer.pal(8,"Dark2") 
wordcloud(textdata1$textda,textdata1$Freq,colors=pal2,random.order=FALSE,ot.per=.45)

library(wordcloud2)

wordcloud2(textdata,color="random-light",backgroundColor = 'black')



作者 周世荣
本文转自EasyCharts,转载需授权


数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询