热线电话:13121318867

登录
首页精彩阅读粒子统计 Cox回归及SPSS操作
粒子统计 Cox回归及SPSS操作
2017-04-06
收藏

粒子统计 Cox回归及SPSS操作

Cox理论三句话:

1、对基准风险函数没有限定,是生存分析中最常用的多因素方法。

2、比例风险假定:自变量对生存率的影响不随时间的变化而变化。

3、风险函数之比就是风险比HR(或相对危险度RR)。

我们假设现在对肺癌有两种治疗方法(新/传统),我们希望分析这两种治疗方法对肺癌治疗的差异。每种方法我们都收集了100例患者信息,包括因变量(是否治愈、开始治疗到治愈的时间),待验证变量(治疗方式),以及控制变量(性别、年龄和治疗方式等自变量)(见图1,数据是随手编的)。


图1 数据展示

首先,我们对该数据依照治疗方式绘制生存曲线(Kaplan-Meier法,具体见之前的粒子统计),看下两种治疗方式的大体情况(图2)。Log-rank检验(一种生存分析中常用的非参数检验方法,用来作单因素检验)结果p=0.114,未提示两种方法有显著差异。

在这里我们特别要注意观察的是,两条生存曲线有没有交叉。在Cox回归中要求自变量对生存率的影响不随时间的变化而变化。对其最直观的检查方法就是通过生存曲线观察有无交叉,如果没有交叉则可以认为满足比例风险假定。

图2 生存曲线

SPSS中我们选择分析-->生存函数-->Cox回归,如图3进行设置(这个对话框和Kaplan-Meier很像,无非就是单因素变成了多因素,具体设置过程我就不啰嗦了)。如果需要计算HR(或RR)的95%可信区间,我们需要在“选项”按钮中勾选上“CI用于exp95%”。


图3 Cox回归设置

最后我们就得到了Cox回归结果(图4),其中我们需要特别关注的是最后4列:Sig、Exp(B)和95% CI的Lower、Upper。Sig就是自变量的p值,从图4可见我们最关心的治疗方式没有表现出显著差异(p=0.110);Exp(B)是系数的指数,在Cox回归中Exp(B)的值就是该自变量的HR(或RR),从图4可见治疗方式的HR(或RR)是1.296;HR(或RR)的95%可信区间是从0.943到1.780(最后2列)。


图4 Cox回归主要结果

今天我们就非常简略地用一个粒子将Cox回归展示了一下,再次提醒,Cox回归要求满足比例风险假定,即自变量对生存率的影响不随时间的变化而变化


数据分析咨询请扫描二维码

若不方便扫码,搜微信号:CDAshujufenxi

最新资讯
更多
客服在线
立即咨询