SPSS分析技术:判别分析
在数据处理中,有这样一种情况:现在已经有若干样本被正确地分类了,但不清楚分类的依据是什么。同时,未来还会有大量的未被分类的样本,需要按照上述规则判定这些样本的所属类别。为此,需要根据已被正确分类的样本及其属性,进行数据分析,找出影响样本归类的关键因素,甚至获得一个判定系数;然后依据判定系数,对未来样本进行判别。判别分析是为了解决未来个案归属问题而提出的一种数据分类技术,它基于已有的分类个案寻求有效的判别规则,并借助判别规则对未来个案的归属进行判定。
判别分析基于已有的个案及其分类情况(已有类别号),寻求能够决定个案类别归属的判定函数式,然后借助判定函数来对未归类个案实施判定。在针对个案的判别分析中,判别函数的质量直接影响到判定的正确率,因此寻求优质的判定函数对于判别分析的正确与否至关重要。
判别分析的价值主要体现在两个方面:
让未来个案自动归类或预测其可能的类别;
修正当前已归类个案中的不严谨结论;
基于已分类的部分个案开展分析并最终获得判别函数式,然后再依据判别函数式重新对已经分类个案进行判断,可以检查判别函数式的质量。如果判定值与原始类别号的吻合度较高,达到85%以上,则表示判别函数式有效,那么可以借助这个判别函数式对未来个案进行分类。与此同时,还可进一步检查在已有个案中,判定值与原始类别号不能吻合的那些个案,看看它们的归类是否存在问题。
两种判别方式
在SPSS中,判别分析的实现共有两种思路,分别是费舍尔(Fisher)判别法和贝叶斯(Bayes)判别法。
Fisher判别法
Fisher判别法是一种基于多维坐标系的判定方式。如果待研究个案被分为K类,那么系统可创建一个K-1维的坐标系,每个类别的中心都是坐标系中的一个点,被称之为质心点。每一个个案都可以表示为K-1个数值构成的坐标点,这个坐标点距离那个质心点更近,就归类到那个类别之中。
例如,将一个个案集分为三类,如果采用Fisher判别法就需要构成一个二维的平面直角坐标系,在这个坐标系中有3个质心点。执行Fisher判别分析后,系统会创建两个函数式,分别可以计算出每个个案对应的X坐标和Y坐标,然后通过计算这个点与每个质心点的距离,找到与当前点距离最小的质心点,从而确定当前个案的归属。
Bayes判别法
Bayes判别法的基本思路是:直接为每个类别产生一个判别函数式。如果原始个案被分为K类,则直接产生K个函数式。对于待判定类别的个案,直接把该个案各属性的取值代入到每个判别函数式中,那个函数式的值最大,该个案就被划归到那个类别中。
例如,某原始个案集被分为4类,则分别产生了Y1~Y4四个函数式。对于待分类的个案H,可以把H的各个属性值分别代入到函数式Y1~Y4中,然后比较4个数值的大小。假设最终结果是Y3最大,那么这个个案就属于第3类。
自变量筛选
与多元线性回归分析相似,判别函数式也是一组包含多个自变量的多元线性方程。因此在设计判别函数式时,同样存在着对多个自变量的进入判定与筛选问题。有下面几种自变量筛选的方式:
1、使用全部自变量法;把用户提供的所有自变量都直接纳入到判定函数式中,无论这些自变量对函数式的作用力到底有多大。这个方法是系统默认的方法。
2、使用步进方法;让自变量逐个尝试进入函数式,如果进入到函数式中的自变量符合条件,则保留在函数式中,否则,将从函数式中剔除。使用步进方法,对自变量的筛选方式。使用步进方法,对自变量的筛选方式,又包括以下几种:
威尔克斯lambda值法:它是组内平方和与总平方和之比,用于描述各组的均值是否存在显著差别,当所有观测组的均值都相等时,Wilks’lambda值为1,;当组内变异与总变异相比很小时,表示组件变异较大,表示组间变异较大,系数接近于0。
未解释方差法:它指把计算残余最小的自变量优先纳入到判别函数式中。
马氏距离法:它把马氏距离最大的自变量优先纳入到判别函数式中。
最小F比率法:它把方差差异最大的自变量优先纳入到判别函数中。
劳氏增值法:它把劳氏统计量V产生最大增值的自变量优先纳入到判别函数中。
范例分析
现在有三种不同种类的花生,记录它们的质量、宽度和长度,制成统计表。每种类型都有20个样本,共60个样本。根据不同种的花生特征,建立鉴别不同种花生的判别方程。
分析步骤
1、选择菜单【分析】-【分类】-【判别】。将类型变量选为分组变量,将质量、宽度和长度选为自变量。自变量进入方法选择步进法。
2、选择【保存】项,将预测组成员和判别分数选中。点击继续,然后点击确定。
结果分析
1、输出判别结果,如下图所示,Dis_1表示判定类别,Dis1_1和Dis2_1分别表示将个案值代入到自动生成的两个判定函数中得到的结果。
2、步进方式筛选自变量的情况;
从上图可知,质量、宽度和长度都被纳入到函数式中,且显著性都为0.000,表示三个自变量的影响力是显著的。
上图是对三个变量步进式进入方程的结果:产生三个模型,序号为1~3。三种模型的Lambda值都远小于1,而且第三个模型的lambda值仅为0.001,显著性为0.000。因此,从总体上说,这三个模型都是有效的,以第三个模型为最终结果。
3、典型判别式函数摘要;
在特征值表格中,本次判别分析共生成两个判别函数式,函数式1和函数式2的特征值都大于1;下表的lambda值都远小于1,显著性都为0.000,说明两个函数式的作用都非常强。
4、函数系数及组质心坐标表格
左边的表格式生成的两个函数式的系数。右边的表格表示三个组质心的坐标。对于标准化的判别函数式,其自变量的系数可以直观地反映该自变量对最终判定的影响力水平。但需要注意的是,在具体的应用当中,不能直接把个案的各个属性的原始值代入到标准化函数式中使用。只有已经标准化的自变量属性值才可应用于标准化的判别函数式。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30