京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言建立回归分析,并利用VIF查看共线性问题的例子
使用R对内置longley数据集进行回归分析,如果以GNP.deflator作为因变量y,问这个数据集是否存在多重共线性问题?应该选择哪些变量参与回归?
>>>> 答
## 查看longley的数据结构
str(longley)
## 'data.frame': 16 obs. of 7 variables:
## $ GNP.deflator: num 83 88.5 88.2 89.5 96.2 ...
## $ GNP : num 234 259 258 285 329 ...
## $ Unemployed : num 236 232 368 335 210 ...
## $ Armed.Forces: num 159 146 162 165 310 ...
## $ Population : num 108 109 110 111 112 ...
## $ Year : int 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 ...
## $ Employed : num 60.3 61.1 60.2 61.2 63.2 ...
longly数据集中有7个变量16个观测值,7个变量均属于数值型。
首先建立全量回归模型
lm1 <- lm(GNP.deflator ~ ., data = longley)
summary(lm1)
##
## Call:
## lm(formula = GNP.deflator ~ ., data = longley)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.009 -0.515 0.113 0.423 1.550
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2946.8564 5647.9766 0.52 0.614
## GNP 0.2635 0.1082 2.44 0.038 *
## Unemployed 0.0365 0.0302 1.21 0.258
## Armed.Forces 0.0112 0.0155 0.72 0.488
## Population -1.7370 0.6738 -2.58 0.030 *
## Year -1.4188 2.9446 -0.48 0.641
## Employed 0.2313 1.3039 0.18 0.863
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.19 on 9 degrees of freedom
## Multiple R-squared: 0.993, Adjusted R-squared: 0.988
## F-statistic: 203 on 6 and 9 DF, p-value: 4.43e-09
建立的模型结果是令人沮丧的,6个变量的显著性p值只有两个有一颗星,说明有些变量不适合用于建模。
看各自变量是否存在共线性问题。此处利用方差膨胀因子进行判断:方差膨胀因子VIF是指回归系数的估计量由于自变量共线性使得方差增加的一个相对度量。一般建议,如VIF>10,表明模型中有很强的共线性问题。
library(car)
vif(lm1, digits = 3)
## GNP Unemployed Armed.Forces Population Year
## 1214.57 83.96 12.16 230.91 2065.73
## Employed
## 220.42
从结果看,所有自变量的vif值均超过了10,其中GNP、Year更是高达四位数,存在严重的多种共线性。接下来,利用cor()函数查看各自变量间的相关系数。
plot(longley[, 2:7])
cor(longley[, 2:7])
## GNP Unemployed Armed.Forces Population Year Employed
## GNP 1.0000 0.6043 0.4464 0.9911 0.9953 0.9836
## Unemployed 0.6043 1.0000 -0.1774 0.6866 0.6683 0.5025
## Armed.Forces 0.4464 -0.1774 1.0000 0.3644 0.4172 0.4573
## Population 0.9911 0.6866 0.3644 1.0000 0.9940 0.9604
## Year 0.9953 0.6683 0.4172 0.9940 1.0000 0.9713
## Employed 0.9836 0.5025 0.4573 0.9604 0.9713 1.0000
从散点分布图和相关系数,均可以得知,自变量间存在严重共线性。
接下来利用step()函数进行变量的初步筛选。
lm1.step <- step(lm1, direction = "backward")
## Start: AIC=10.48
## GNP.deflator ~ GNP + Unemployed + Armed.Forces + Population +
## Year + Employed
##
## Df Sum of Sq RSS AIC
## - Employed 1 0.04 12.9 8.54
## - Year 1 0.33 13.2 8.89
## - Armed.Forces 1 0.74 13.6 9.39
## <none> 12.8 10.48
## - Unemployed 1 2.08 14.9 10.88
## - GNP 1 8.47 21.3 16.59
## - Population 1 9.48 22.3 17.33
##
## Step: AIC=8.54
## GNP.deflator ~ GNP + Unemployed + Armed.Forces + Population +
## Year
##
## Df Sum of Sq RSS AIC
## - Year 1 0.46 13.3 7.11
## <none> 12.9 8.54
## - Armed.Forces 1 1.79 14.7 8.62
## - Unemployed 1 5.74 18.6 12.43
## - GNP 1 9.40 22.3 15.30
## - Population 1 9.90 22.8 15.66
##
## Step: AIC=7.11
## GNP.deflator ~ GNP + Unemployed + Armed.Forces + Population
##
## Df Sum of Sq RSS AIC
## - Armed.Forces 1 1.3 14.7 6.62
## <none> 13.4 7.11
## - Population 1 9.7 23.0 13.82
## - Unemployed 1 14.5 27.8 16.86
## - GNP 1 35.2 48.6 25.76
##
## Step: AIC=6.62
## GNP.deflator ~ GNP + Unemployed + Population
##
## Df Sum of Sq RSS AIC
## <none> 14.7 6.62
## - Unemployed 1 13.3 28.0 14.95
## - Population 1 13.3 28.0 14.95
## - GNP 1 48.6 63.2 27.99
根据AIC 赤池信息准则,模型最后选择Unemployed、Population、GNP三个因变量参与建模。
查看进行逐步回归后的模型效果
summary(lm1.step)
##
## Call:
## lm(formula = GNP.deflator ~ GNP + Unemployed + Population, data = longley)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.047 -0.682 0.196 0.696 1.435
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 221.12959 48.97251 4.52 0.00071 ***
## GNP 0.22010 0.03493 6.30 3.9e-05 ***
## Unemployed 0.02246 0.00681 3.30 0.00634 **
## Population -1.80501 0.54692 -3.30 0.00634 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.11 on 12 degrees of freedom
## Multiple R-squared: 0.992, Adjusted R-squared: 0.989
## F-statistic: 472 on 3 and 12 DF, p-value: 1.03e-12
从各判定指标可以看出,模型的结果是可喜的。参与建模的三个变量和截图的均是显著的。Multiple R-squared高达0.992。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24