 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		一场用R语言打造的商务图表视觉盛宴
之前已经模仿了挺多网络上流行的高难度商务图表案例,自觉功力有所小成,就想着趁热打铁,把那些剩余的还没有被挖掘出来了的商务图表案例全部补全。
本篇给出不等宽柱形图案例以及MEKKO(也称市场细分矩阵)图案例全部四张图的R语言代码,作为ggplot商务图表进阶道路上的一个小小一步。
因素需要构造自定义标度,这里需要scale包的支持
library(ggplot2)
library(scales)
构造不等宽柱形图的案例数据(本案例模仿对象是刘万祥老师的《Excel图表之道》,感谢老师在业界的无私奉献精神,给我后备爱或者留下了如此丰富的图表案例资源,这里再次向老师致敬!)。
mydata<-data.frame(Name=paste0("项目",1:5),Scale=c(35,30,20,10,5),ARPU=c(56,37,63,57,59))
因为本篇 所构造的不等宽柱形图、MEKKO矩阵图等都是建立在四边形(或者呈为矩阵)的基础图形之上的,即物理的二维空间中,四个点坐标可以定位出一个四边形,利用R语言的向量化操作,就可以同时操纵n组长度为4的向量,来批量生成矩形块,这里的核心技巧只是在数据源中准确的生成每一组向量(也即每一个矩形块的水平轴起点、终点、垂直轴的起点、终点)。
在ggplot系统中,生成矩形的图层函数是geom_rect()函数,内置四个参数:
xmin\xmax\ymin\ymax
不等宽柱形图:
	
#构造矩形X轴的起点(最小点)
mydata$xmin<-0
for (i in 2:5){
mydata$xmin[i]<-sum(mydata$Scale[1:i-1])
}
#构造矩形X轴的终点(最大点)
for (i in 1:5){
mydata$xmax[i]<-sum(mydata$Scale[1:i])
}
#构造数据标签的横坐标:
for (i in 1:5){
mydata$label[i]<-sum(mydata$Scale[1:i])-mydata$Scale[i]/2
}
定义字体:
windowsFonts(myFont = windowsFont("微软雅黑"))
运行ggplot函数:
	
ggplot(mydata)+
geom_rect(aes(xmin=xmin,xmax=xmax,ymin=0,ymax=ARPU,fill=Name))+
scale_fill_manual(values=c("#54576B","#BD1F12","#E8BA11","#62962A","#9B56AF"))+
geom_text(aes(x=label,y=ARPU-3,label=ARPU),size=6,col="white",family="myFont")+
geom_text(aes(x=label,y=-2.5,label=Scale),size=4,col="black",family="myFont")+
geom_text(aes(x=label,y=-5.5,label=Name),size=4,col="black",family="myFont")+
annotate("text",x=16,y=70,label="不等宽柱形图",size=8,family="myFont")+
annotate("text",x=14,y=64,label="这是一幅很用心的图表",size=4,family="myFont")+
annotate("text",x=11,y=-9.8,label="Source:EasyCharts",size=4,family="myFont")+
ylim(-10,80)+
theme_nothing()
	 
-----------------------------------------------------------------------------------------------------------
不等宽条形图:
该案例来自于本人小号数据小魔方,也曾在本平台转发过:
图表案例——全球创新国家1000强研发投入变动趋势
设置目录导入数据
mydata<-read.csv("barchart.csv",stringsAsFactors = FALSE)
names(mydata)[1:5]<-c("State","RD","Betw","Cumcost","class")
#构造矩形X轴的起点(最小点)
mydata$xmin<-0
for (i in 2:nrow(mydata)){
mydata$xmin[i]<-sum(mydata$RD[1:i-1])
}
#构造矩形X轴的终点(最大点)
for (i in 1:nrow(mydata)){
mydata$xmax[i]<-sum(mydata$RD[1:i])
}
#构造数据标签的横坐标:
for (i in 1:nrow(mydata)){
mydata$label[i]<-sum(mydata$RD[1:i])-mydata$RD[i]/2
}
mydata$class<-factor(mydata$class,levels=c("亚洲","欧洲","北美","其他地区")).
运行作图函数:
ggplot(mydata)+
geom_rect(aes(xmin=xmin,xmax=xmax,ymin=0,ymax=Betw,fill=class),col="white")+
coord_flip()+
scale_x_reverse()+
scale_y_continuous(limits=c(-.45,.7),breaks=seq(-.4,.7,.1),labels=percent_format(),position = "top")+
scale_fill_manual(values=c("#802428","#AB6661","#D1A6A1","#A89B94"))+
geom_text(aes(x=label,y=Betw/2,label=Betw),size=3,col="white",family="myFont")+
geom_text(aes(x=label,y=ifelse(Betw>0,Betw+.03,Betw-.033),label=mydata$RD),size=4,col="black",family="myFont")+
geom_text(aes(x=label,y=ifelse(Betw>0,-.07,.07),label=State),size=4,col="black",family="myFont")+
labs(title="不等宽柱形图",subtitle="这是一幅很用心的图表",caption="Source:EasyCharts",x="",y="")+
theme(
text=element_text(family="myFont"),
plot.title=element_text(size=18),
plot.subtitle=element_text(size=14),
plot.caption=element_text(size=10,hjust=0),
plot.background=element_blank(),
panel.background=element_blank(),
panel.grid=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank(),
legend.position=c(0.9,0.2),
axis.line.x=element_line()
)

--------------------------------------------------------------------------------------------------------
MEKKO(也称市场细分矩阵)
该图表同样来源于刘老师的图表宝典——《Excel图表之道》
Mekko<-read.csv("Mekko.csv",stringsAsFactors = FALSE)
Mekko$Class<-factor(Mekko$Class,order=T)
#构造矩形(Obama)X轴的起点(最小点)
Mekko$xmin<-0
for (i in 2:nrow(Mekko)){
Mekko$xmin[i]<-sum(Mekko$percent[1:i-1])
}
#构造矩形(Obama)X轴的终点(最大点)
for (i in 1:nrow(Mekko)){
Mekko$xmax[i]<-sum(Mekko$percent[1:i])
}
#构造数据标签的横坐标:
for (i in 1:nrow(Mekko)){
Mekko$label[i]<-sum(Mekko$percent[1:i])-Mekko$percent[i]/2
}
	
这里我不想重复映射两次geom_rect()图层函数,所以从新整理了数据源,一定要记得ggplot的作图体系中使用因子变量进行分类作图的思想,这里完全可以用一个类别标量赋给fill属性,避免代码冗余。
	
mynewdata1<-Mekko[,c(1,6,7)];mynewdata1$ymin<-0;mynewdata1$ymax<-Mekko$Obama;mynewdata1$Type<-"Obama"
mynewdata2<-Mekko[,c(1,6,7)];mynewdata2$ymin<-Mekko$Obama+Mekko$m;mynewdata2$ymax<-Mekko$Obama+Mekko$m+Mekko$McCain;mynewdata2$Type<-"McCain"
mynewdata<-rbind(mynewdata1,mynewdata2)
mynewdata$Type<-factor(mynewdata$Type,levels=c("Obama","McCain"),order=T)
运行作图函数:
ggplot(mynewdata)+
geom_rect(aes(xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax,fill=Type),col="white")+
scale_fill_manual(values=c("#004C7F","#B70023"))+
scale_x_continuous(breaks=Mekko$label,labels=Mekko$Class)+
geom_text(data=Mekko,aes(x=label,y=.25,label=percent(Obama)),size=3.5,col="white",family="myFont")+
geom_text(data=Mekko,aes(x=label,y=.8,label=percent(McCain)),size=3.5,col="white",family="myFont")+
labs(title="MEKKO-市场细分矩阵图",subtitle="这是一幅用心良苦的图表",caption="Source:EasyCharts",x="",y="")+
theme(
plot.margin=unit(c(2,0,0.5,0),"lines"),
panel.spacing=unit(c(0,0,0,0),"lines"),
axis.text.x=element_text(angle=90,size=10),
panel.background=element_blank(),
axis.ticks=element_blank(),
axis.text.y=element_blank(),
legend.position=c(.78,1),
legend.direction="horizontal",
text=element_text(family="myFont"),
plot.title=element_text(size=18),
plot.subtitle=element_text(size=14),
plot.caption=element_text(size=10,hjust=0),
legend.title=element_blank()
)

---------------------------------------------------------------------------------------------------------
ggplot(mynewdata)+
geom_rect(aes(xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax,fill=Type),col="white")+
coord_flip()+
scale_fill_manual(values=c("#004C7F","#B70023"))+
scale_x_continuous(breaks=Mekko$label,labels=Mekko$Class)+
geom_text(data=Mekko,aes(x=label,y=.25,label=percent(Obama)),size=3.5,col="white",family="myFont")+
geom_text(data=Mekko,aes(x=label,y=.8,label=percent(McCain)),size=3.5,col="white",family="myFont")+
labs(title="MEKKO-市场细分矩阵图",subtitle="这是一幅用心良苦的图表",caption="Source:EasyCharts",x="",y="")+
theme(
plot.margin=unit(c(0,0,0,0),"lines"),
panel.spacing=unit(c(0,0,0,0),"lines"),
axis.text.y=element_text(size=10),
panel.background=element_blank(),
axis.ticks=element_blank(),
axis.text.x=element_blank(),
legend.position=c(.78,1),
legend.direction="horizontal",
text=element_text(family="myFont"),
plot.title=element_text(size=18),
plot.subtitle=element_text(size=14),
plot.caption=element_text(size=10,hjust=0),
legend.title=element_blank()
)

因水平有限,代码写的比较糟糕,图表如有可改善的细节,还请的各位多多指点。
	
 
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23