四种最常见的SEM数据分析方法,你用过几种
数据分析在SEM中是最为基础的技能,说得简单点,数据分析就是为了发现问题,并为解决问题提供数据参考。有经验的SEMer都知道,尽信数据则不如无数据。数据就躺在哪里,关键在分析之前,你之前要有清晰的思维逻辑:你为什么要分析数据?你希望通过数据分析得到什么?我一般的分析数据逻辑如下:
确定分析的目的—>收集数据—>整理数据—>分析数据—>得到一些分析的思路
今天主要分享下数据分析的常用方法,主要四种:
1、趋势分析方法
2、比重分析方法
3、TOP N分析法/二八原则
4、四象限分析方法。
这也是从接手一个项目到具体的优化措施的数据分析逻辑。老规矩,能用图片说明的就不用文字。
趋势分析法又叫比较分析方法,水平分析方法,主要通过数据连续的相同指标或比率进行定基对比或环比对比,得出他们的变动方向,数额,幅度,来感知整体的趋势。
这种方法粗略而简单,体现的是一个行业的总体趋势。
主要有分析纬度:有时段趋势、逐日趋势、逐周趋势、逐月趋势、逐季节趋势……这个分析法比较简单,一般通过百度指数、百度统计就能掌握这些趋势。重点是根据自己行业,针对不同时间的趋势进行广告策略调整。看几个图片带过:
指相同事物进行归纳分成若干项目,计算各组成部分在总数中所占的比重,分析部分与总数比例关系的一种方法。
在SEM中的应用
有利于帮助SEMer快速掌握企业的核心推广业务、主要推广渠道、主要推广地域等主要贡献者。
从上图中可以看出来,这个账户消费最大的是通用词,其次是品牌词,各占40%左右,而收益最大的是品牌词,占了总体收益的89%,消费更多的通用词收益仅有11%。那么此时应该着重推广哪类词,不言而喻。
TOP N分析法指基于数据的前N名汇总,与其余汇总数据进行对比,从而得到最主要的数据所占的比例和数据效果。
在SEM中的应用
1)类似二八原则,找到消费/效果占比80%的数据,有效帮助定位问题,不然过多的数据把问题复杂化 ;
2)定位出需要持续关注消费或转化的那些重要关键词。
四象限分析法:也叫矩阵分析方法,是指利用两个参考指标,把数据切割为四个小块,从而把杂乱无章的数据切割成四个部分,然后针对每一个小块的数据进行针对化的分析。
四象限在SEM优化中的具体应用:
以上就是SEM数据分析的四种基本方法,掌握了这四种思维方式,再配以娴熟的EXCEL技巧,定会让你的SEM优化工作事半功倍。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20