
数据分析方法:非正态数据转化成正态数据
大部分的数据分析都希望原始数据是满足正态分布的定距变量。然而,显示是残酷的,在各种研究中,常常需要面对非正态分布的定距数据。为了解决数据的正态性问题,数学家们总结了很多转化方法,但是没有万能神药,都需要对症下药(根据数据的实际分布情况,选择合适的转化方法)。
下面不会介绍具体的转化方法,只是帮助大家理顺正态转化的思路,明白正态转化的逻辑,不至于将正态转化看做神秘领域,高不可攀。
正态转化四步骤
第一步:计算数据的分布状况及两个参数:偏度(Skewness)和峰度(Kurtosis)。
第二步:根据变量的分布形状和参数,决定是否做转换。
1、对称判断
看Skewness(偏差度)的取值。如果偏度为0,则是完全对称(但罕见);如果偏度为正值,则说明该变量的分布为正偏态;如果偏度为负值,则说明该变量的分布为负偏态。然而,偏度值还不能完全判断偏态的分布是否与正态分布有显著差别,所以还需要做显著性检验。如果检验结果显著,我们可能(注意是“可能”)可以通过转换来达到或接近对称。
2、峰度检验
Kurtosis(峰度)是判断曲线陡峭和平缓的指标。如果峰度为0,说明该变量分布合适(但罕见);如果峰度为正值,说明该变量的分布陡峭;反之,如果峰度为负值,说明变量的分布平缓。峰度也需要通过显著检验来判断与正态分布是否有显著差别。我们可能可以通过转换来达到或接近正态分布。
第三步:如果需要做正态转换,根据变量的分布形状,确定相应的转换公式。下面简单介绍3种常见的正态转换方法
1、如果是中度偏态
如果偏度为其标准误差的2-3倍,可以考虑取根号值来转换。
2、如果高度偏态
如果偏度为其标准误差的3倍以上,则可以取对数,其中又可分为自然对数和以10为基数的对数。
3、对于双峰或多峰数据
秩分的正态得分的转化方法,SPSS软件中常用,请关注SPSS视频教程。
第四步:再次检验转换后变量的分布形状。如果没有解决问题,或者甚至恶化,需要再从第二或第三步重新做起,然后再回到第一步的检验。直至达到比较令人满意的结果。
数据正态化注意点
1、偏度和峰度的标准误差与样本量直接有关。具体说来,偏度的标准误差约等于6除以n后的开方,而峰度的标准误差约等于24除以n后的开方,n为样本量。由此可见,样本量越大,标准误差越小。
2、数据的正态转化方法不是通用的,要根据不同的数据分布情况,选择合适的或创造合适的转化公式,转化后必须验证转化效果,最终达到转化的目的。
3、不是所有的非正态分布的数据都能够通过正态转化而转化为正态分布数据。非正态分布的数据也可以使用非参数方法进行分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14