大数据型企业建设指南:大数据带来什么
在以往的文章中,我们不止一次的提到过数据对企业的重要性。对现代企业来说,数据的意义不亚于第一次工业革命后的煤炭、钢铁,或是现代工业的电力、石油甚至自动化技术。事实上,对于数据的深度挖掘和应用正是工业4.0的核心。在具体应用中,广告自动化购买、用户画像这些基于大数据的企业级应用都已经获得了广泛的认同。
对于互联网企业来说,数据常常贯穿了整个企业的运营过程,支撑着企业的正常运转,但大多数企业的数据资产依然长年累月的堆积在服务器里,并不产生什么价值,如同被埋进地下的金子。
如何将这些埋进地里的金子挖出来、产生价值?这个问题摆在了企业面前。傅志华在三年前加入360,同时开始推动360内部的数据系统搭建的工作。傅志华长期从事数据工作,并且同时在高校兼任讲师。他认为,企业的数据系统构建的首要目标是“因地制宜”,从需求和应用场景出发,“倒推”出一个最适合自己企业的数据系统。
傅志华见证、参与了整个360的企业数据系统的建设,从数据采集的标准化、数据仓库、主机和数据统计工具的建设,再到运营分析的数据体系的指标化……目前,360大数据中心拥有五十多人的团队,利用360在运营中产生的数据进行数据采集、数据预处理、数据仓库的建设、数据统计、大数据的分析、数据挖掘、数据可视化等工作,利用企业在运转中产生的各种数据进行多个层次的应用:
业务运营监控
精细化运营
用户生命周期管理
市场传播
经营分析
战略分析
不同层次的应用需要不同的部门产生的数据,越高层次的应用对数据的要求就越高,也越能够对企业产生巨大的影响。
企业数据系统的构建对于企业来说最大的意义就是打破数据孤岛,使企业的数据资产“活”起来,为企业产生更多价值。傅志华认为,数据对于企业的价值体现在三点中:
首先,作为一种资源,数据的保有和利用就意味着企业拥有的“数据资产”。许多企业以数据资产为核心开发了大量产品,拥有个性化推荐能力的新闻阅读客户端和购物软件都是其中的佼佼者;
其次,对数据的深度挖掘和利用业务运营监控和精细化运营成为可能。如前文提到的利用数据进行用户生命管理、经营分析和战略分析也成为企业建立数据系统的目的之一;
最后一点,数据的利用也同时能够实实在在地增加企业的业绩和收入。无论是利用数据系统开发产品、进行营销或是提升管理效率,都可以为企业创造更多价值和业绩。傅志华表示,在引入个性化推荐算法之后,360手机助手应用下载的转化率得到了非常显著的提升。
那么,企业建立数据系统就是势在必行的吗?傅志华认为,这个问题需要根据实际情况进行考虑。对于互联网、金融和通信等行业,由于先天就拥有大量数据,同时数据应用更加成熟,对企业业绩的增加几乎可以说是立竿见影,所以这些行业更适合主动建立一个完善的数据系统;另一些行业则需要更多成本才能发挥数据的价值,甚至需要从数据的采集开始从头做起,所以在较为传统的零售、餐饮行业大数据应用的发展稍慢。
同时,傅志华也再次强调了“因地制宜”的重要性。尤其是对于中小型企业来说,建立一个完善的数据系统需要投入大量的人力、物力,对于规模较小的企业可以说是一笔大开支了。他建议这些企业利用第三方数据工具进行数据的采集、统计和处理,根据自己的业务诉求来进行企业的数据化建设。
相比之前提到的各种问题,傅志华认为,观念的转变才是企业数据化面临的最大困难。
大数据能够给企业带来什么样的价值?我的企业适不适合大数据?我的企业哪里用得上大数据?很多企业的决策者对这些问题并不了解,缺乏“数据意识”,不习惯通过数据进行经营和决策。
观念的转变需要时间,也需要市场的培养。在大数据时代,数据的意义不亚于第一次工业革命后的煤炭、钢铁,或是现代工业的电力、石油甚至自动化技术。企业只有跟上时代的步伐才能够在血腥的市场搏杀中生存下来。
数据分析咨询请扫描二维码
在当今数字化时代,数据已成为推动经济和技术发展的关键因素。企业和机构对数据科学与大数据专业人才的需求急剧增长。该领域涵盖 ...
2024-11-16金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13