大数据分析的局限乃传统统计学问题
大数据”已成为当今炙手可热的科技,商务、医疗、社交、教育、政务等领域纷纷广泛采用“大数据”技术去提升应用系统的智能及效率。
“大数据”分析之潜在问题
“大数据”的广泛应用始于美国。自从美国总统奥巴马2012年3月推出2亿美元的“大数据研究及发展计划”后,世界各大小经济体陆续仿效,大力投资相关领域。全球资讯科技企业亦不敢怠慢,积极推出适合的大数据资讯科技方案及产品,更大洒金钱推广大数据分析的优点及其所能带来的商机。据观察,近期不少从事金融、医疗、社会工作、工商业、政务等范畴主管都已被潜移默化,鼓吹“大数据”的功能及效益。然而,“大数据”真的是万能的吗?本文引用不同的国际专家报告,反映“大数据”分析之潜在问题。
首篇报告题为《谷歌流感的比喻:大数据分析的陷阱》("The Parable of Google Flu : Traps of Big DataAnalytics"),描述了谷歌公司曾利用“大数据”分析推算2011/2012年度美国流感的趋势,但结果却强差人意,估计的流感个案数目远超过实际数目。而谷歌利用的数据是来自用户使用的关键词(如“禽流感”)次数及分布作推算分析。专家认为构成严重误差的主要原因是谷歌盲目地广泛收集关键词,以为越多越好,却没有了解用户查询时的出发点,结果收集得的数据大部分来自非流感病患者,因此在数据采集阶段已严重犯错,自然推算失准。若数据分析全力集中在流感病患者,结果便会截然不同。
第二位专家是美国加州大学伯克利分校的国际知名学者米高佐敦(MichaelJordon)教授,他最近接受美国IEEE学会杂志访问,在题为"Machine-LearningMaestro Michael Jordan on the Delusions of Big Data and Other Huge EngineeringEfforts" 一文中指出,“大数据”在现今商业市场被过分炒作,它最后可能只是一场空欢喜,教授更预测“大数据”的“冬天”即将来临。他认为“大数据”用户作出假设的速度将会超越大数据的统计范畴,在这情况下数据分析结果难免会出现错误,造成大量噪音,影响推算的可靠性。
从另一角度看,“大数据”用户往往忽略数据的“动力”(dynamics)。例如在变幻无常的商务环境中,用户的需求不停在变,那么昨天的“大数据”分析结果能有效地应用于今天的商务环境吗?能够满足用户今天的需求吗?若然不能,我们需要重新进行分析,但昨天采集商务数据的方法能满足用户今天的新需求吗?归根究底,什么时候开始分析及什么时候停止既是统计学应用的老问题,亦是“大数据”分析必须严肃面对的问题,但在千变万化的应用及数据环境下,要应对这个问题更是难上加难。因此佐敦教授进一步指出“大数据”分析服务提供者有责任清楚说明分析推算法的质量标准及其误差度,做好用户的“期望管理”(Expectation Management)。
“大数据”的十大局限
“前车可鉴”,因此用户在使用“大数据”技术时不容掉以轻心,必须紧慎考虑它在操作上的“盲点”(局限性)。归纳而言,这些“盲点”大致是由于以下网络数据的不健康特性而产生:
- 噪音性:网上数据泛滥,资讯内容五花八门,格式也参差不一。要从中过滤与应用需求无关的数据,既复杂亦耗时。
- 真实性:由于网络资讯自由,即使在找出相关数据之后,内容的真假亦难以分别。例如去年在美国总统大选期间,在网络媒体上謡言满天飞,虚假新闻层出不穷,渗透全美每一角落;“教宗赞助特朗普”、“希拉里向伊斯兰国(IS)贩卖军火”等假新闻在《脸书》上的分享及点评率远比传统纸媒为高。然而,“垃圾入,垃圾出”(Garbage In Garbage Out),基于伪造资讯的“大数据”分析,难免会适得其反。
- 代表性:真实的数据并不一定具代表性。若然系统错误地使用了缺乏代表性的资料作分析的话,结果便会弄巧反拙。
- 完整性:利用非完整的数据进行分析,结果以偏概全,不尽不实,容易引致误判。
- 时效性:某类数据在事件发生当刻可能大派用场,但当事件或时限过后,其影响力未必复再。若然过量的旧数据被用作分析,结果未能反映现况。再者,适时的数据往往因为比旧数据少而很容易被忽略。
- 解释性:在“大数据”的分析过程中,基于输入的数据,算法便会产生及输出分析结果。在分析过程中,数据输入如何产生输出的理据及两者的因果关系并不清晰,如黑箱作业。
- 预测性:世事变幻莫测,以前从未发生过的意外絶不罕见,但却难以预料(分析出来)。因此,有专家认为“大数据”分析是规范的(prescriptive)而不具预测性(predictive)的功能。
- 误导性:使用假资讯或错误分析算法均会影响结果的可靠性。“尽信书则不如无书”,未经核实及验证的分析结果可能会造成严重的反效果。
- 合法性:数据内容、采集方法及其使用过程极有可能涉及个人私隐、商业机密及公众权益等资讯。因此,资讯的安全性和合法性对“大数据”应用十分之关键,可是不少企业只顾赚钱,而罔顾这些因素。
- 价值性:“大数据”不是免费的,企业切忌盲目跟风。数据本身、分析软件等均所费不菲,因此成本效益的衡量是企业采用“大数据”的另一关键考虑点。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13