京公网安备 11010802034615号
经营许可证编号:京B2-20210330
算法与数据结构|查找
1.查找基本概念
分为静态查找和动态查找;静态查找时构造的存储结构成为静态查找表,动态查找时构造的存储结构为动态哈招标
2.静态查找表
静态查找表包括:顺序表、有序顺序表、索引顺序表三种结构。
2.1 顺序表
在顺序表上查找的基本思想是:从顺序表的一端开始,用给定数据元素的关键字逐个与顺序表中各数据元素的关键字比较,若存在,则查找成功;反之,则查找失败。
查找成功的平均查找长度ASL_成功=(1+n)/2;查找失败平均查找长度ASL_失败=n
2.2 有序顺序表
有序顺序表上的查找算法主要有顺序查找和二分查找方法
2.2.1 顺序查找
与之前的查找一样,但是由于是有序的因此在失败时平均查找长度与之前是有不同的:
ASL_成功=(n+1)/2;ASL_失败=(n+1)/2。
2.2.2 二分查找
基本思想:在一个查找区间,确定查找区间的中心位置,用待查找的元素的关键字与之对比,若相等则查找成功;否则,若若小于则把查找区间改为原区间的左部分;若大于则把查找区间改为原区间的右部分;这样查找一直到查找区间的上界小于下界为止。
2.3 索引顺序表
当顺序表的数据元素个数非常大时,无论使用哪种查找算法都需要很长的时间,此时,我们可以在顺序表上建立索引表。我们把在其上建立索引表的顺序表叫做主表,主表中存放数据元素的全部信息,索引表中只存放主表中要查找数据元素的主关键字和索引信息。
当数据元素个数非常庞大时,可以对索引表再做索引表,这样的索引表叫做耳机索引表或者多级索引表。
索引表还分为等长索引表、不等长索引表(多一个length域)(主表分段有序即可,要求比有序低)。
3.动态查找表
3.1 二叉排序树
二叉排序树:或者是一个空树或者具有以下性质:(1)若左子树不空,则左子树上所有节点的关键字值均小于根节点的关键字值;(2)若右子树不空,则右子树上所有节点的关键字均大于等于根节点的关键字值;
3.2 B_树
与二叉排序树相比,B_树是一种平衡多叉排序树。这里说的平衡是指所有叶节点都在同一层上,从而可避免出现像二叉排序树那样的分支退化现象;多叉指多余二叉,B_是一种动态查找效率高于二叉排序树的树。
B_树中所有节点的孩子节点的最大值成为B_树的阶通常用m表示。一棵m阶的B_树或者是一棵空树,或者是满足下列要求的m叉树:
1,树中每个节点最多有m个孩子节点
2,除根节点外,其他节点至少有[m/2](向上取整)个孩子节点
3,若根节点不是叶节点,则根节点至少有两个孩子节点。
4,每个节点的结构:
n表示该节点中关键字个数;Ki表示该节点的关键字且满足Ki<Ki+1;Pi为该节点的孩子节点指针且满足Pi指针所指及诶但的关键字均大于等于Ki小于Ki+1。Pn指针所指的关键字大于等于Kn
4.哈希表
哈希函数:把数据元素的关键字和该数据元素的存放位置之间的映射函数称为哈希函数;哈希表就是通过哈希函数确定数据元素存放位置的一种特殊结构。
哈希冲突,当数据元素关键字不相等,但是经过哈希函数映射的位置相同时,我们管这个叫做哈希冲突.哈希冲突主要与三个因素有关:a,装填因子(存入元素与哈希池地址空间壁纸;b,使用的哈希函数相关;c,与解决哈希冲突的冲突解决函数有关)
解决哈希冲突的方法,基本思想:当哈希冲突时,通过哈希函数产生一个新的哈希地址是不产生冲突,通常哈希函数是一组函数。
一旦构造好哈希表,只需要以关键字K和哈希函数来映射到地址,然后从地址中取出关键字元素对比是否相同,相同则查找成功,否则以建立哈希表时所用的冲突函数得到新的地址查看关键字是否相同,一直到查找成功或查找完成m次而未查找到。数据分析师培训
常用的哈希函数构造方法:1,除留余数法;2,直接定址法;3,数字分析法。
哈希冲突解决方法:1,开放定址法(线性探查法、平方探查法、伪随机数法);2,链表法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20