用简单的分析发现运营的秘密之:构成分析
一提到数据分析,很多人立刻会联想到眼花缭乱的数据、高大上的工具、高深莫测的算法,认为那些东西离自己很远而望而却步。其实,数据分析不一定都要用得上复杂的工具和高深的算法,一些简单易行的基础分析方法同样可以具有非凡的洞察力。今天我们就简单聊一聊基础分析方法之一:构成分析。
构成分析也叫做结构分析或比例分析,是用来分析和揭示一种事物的组成部分及其占比的一种普遍性分析方法。利用构成分析,我们可以知道话务类别、投诉原因、客户群体、员工表现等多个方面的构成要素,从而确定进一步分析与改进的目标及优先级顺序。
首先,我们来看一下某中心的当前人工话务构成:
人工话量构成示例
当你看到这个数据的时候会首先想到什么呢?从运营的角度来讲,重复来电占比高意味着接听率不理想、首解率不理想、宝贵的人工工时的“浪费”以及客户的负面感知。那么“降低重复来电占比”就很自然的成为工作量优化以及人工效能提升优先考虑的对象。
除了话量构成,我们还可以同样用这种简洁有力的方法来查看各话务类型占比、各联络渠道业务承接量占比、解决与未解决占比、总工时消耗占比等等各种构成情况。
日常运营管理中,优化平均处理时长(AHT)是提升人均产能和整体产能的关键举措之一。而如何发现通话时长的瓶颈既优化点是这项工作的前提。运用构成分析,我们可以把典型的通话流程进行解构(见下图),针对每一个关键环节进行消耗时长的测量,然后再从总体差异、节点差异等方面进行进一步的对比与剖析,从而找到各个环节的优化空间。
通话流程时长分解
再看下面的客户与话务构成对比分析:
客户的联络频率并不是均匀的,很多客户可能常年都不会联络你,有些客户一有问题就会联络你,还有些客户有事没事就喜欢联络你。我们不能直接左右客户的行为,但分析、引导与预防工作还是要做的。根据麦肯锡的一项调查结果,呼叫中心51%的来电是由14%的客户发起的。也就是说,14%的客户造就了呼叫中心一半以上的工作量。当我们把客户及来电分别进行构成分析并放在一起做对应对比的时候(如下图),其结果往往会令我们眼前一亮或者心中一惊。那么接下来的工作重点就不言而喻了,这14%的客户群是什么人?他们有什么共同特征?他们的来电原因有什么共性?我们可以采取什么方式进行疏导、预防、甚至控制?
客户与话量的构成对比
正确地定位问题(what)、解构问题(why)是寻找问题解决方法(how)的重要前提,而从最简单的基础分析方法入手,人人都可以是数据分析师。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21