大数据时代,这项收集数据的技能不可少
大数据是未来的“新石油”。《人类简史:从动物到上帝》的作者尤瓦尔·赫拉利说:大数据将是人类自由意志的终结,数据主义将取代以往的宗教和人文主义,成为未来的信仰。人人都在谈大数据,谈DT时代,我们剥去社会附加上的外衣,则回归“数据”二字。
那如何获取数据呢?
在运营公众号这么长一段时间,经常有人问超模君:超模君,我需要什么的数据,该怎么处理,或者直接问超模君,能不能给我提供一些数据?
其实超模君内心是奔溃的。。。而一般我给出的建议如果没有整理好的数据,可以尝试做个爬虫试试。而在获取数据的道路上并不简单,爬虫可谓是“麻雀虽小,五脏俱全”,爬虫虽然操作起来很简单,用十几行脚本语言就可以搞定,但其中可涉及到网络通信,字符串处理,数据库等,能使用到一种语言的几乎所有组件。
一言不合就上代码
我们先来看一个最简单的最简单的爬虫,用python写成,只需要三行。
import requests
url="http://www.cricode.com"
r=requests.get(url)
上面这三行爬虫程序,就如下面这三行情诗一般,很干脆利落。
是好男人,
就应该在和女友吵架时,
抱着必输的心态。
上面那个最简单的爬虫,不是一个完整的爬虫,因为爬虫通常需要以下3个步骤:
1)给定的种子URLs,爬虫程序将所有种子URL页面爬取下来
2)爬虫程序解析爬取到的URL页面中的链接,将这些链接放入待爬取URL集合里
3)重复1、2步,直到达到指定条件才终止爬取
因此,一个完整的爬虫大概是这样子的:
import requests #用来爬取网页
from bs4 import BeautifulSoup #用来解析网页
seds = ["http://www.hao123.com", #我们的种子
"http://www.csdn.net",
"http://www.cricode.com"]
sum = 0 #我们设定终止条件为:爬取到100000个页面时,就不玩了
while sum < 10000 :
if sum < len(seds):
r = requests.get(seds[sum])
sum = sum + 1
do_save_action(r)
soup = BeautifulSoup(r.content)
urls = soup.find_all("href",.....) //解析网页
for url in urls:
seds.append(url)
else:
break
上面那个完整的爬虫,不足20行代码,相信你能找出20个需要改进的地方来。因为它的缺点实在是太多了。下面列举一下它的N个缺点:
1)我们的任务是爬取1万个网页,按上面这个程序,一个人在默默的爬取,假设爬起一个网页3秒钟,那么,爬一万个网页就要3万秒钟。MGD,我们可以考虑开启多个线程去一起爬取,或者用分布式架构去并发地爬取网页。
2)种子URL和后续解析到的URL都放在一个列表里,我们应该将这些待爬取的URL存放到一个新的更合理的数据结构里,例如队列或者优先队列。
3)对各个网站的URL,我们一视同仁,然而,我们应该是要区别对待的。应当考虑大站好站优先原则。
4)我们每次发起请求,都是根据URL来发起的,而在这个过程中会牵涉到DNS解析(将URL转换成 IP 地址)。一个网站通常有数以万计的URL,所以我们可以考虑将这些网站域名的 IP 地址进行缓存,避免每次都发起DNS请求,浪费时间。
5)解析到网页中的URLs后,我们没有做任何去重处理,全部放入了待爬取的列表中。事实上,可能有很多链接是重复的,我们做了很多无用功。
6)…..
那么,真正的问题来了,学挖掘机到底哪家强?
现在我们就来列出上面找出的几个问题的解决方案。
1)如何做到并行爬取
我们可以有多重方法去实现并行。
多线程或者线程池方式,一个爬虫程序内部开启多个线程。同一台机器开启多个爬虫程序,这样,我们就有N多爬取线程在同时工作。能大大缩短时间。
此外,当我们要爬取的任务特别多时,一台机器、一个网点明显不够,这时我们就要考虑分布式爬虫了。常见的分布式架构有:主从(Master——Slave)架构、点对点(Peer to Peer)架构,混合架构等。
说到分布式架构,我们需要考虑的问题就有很多,比如我们需要分派任务,各个爬虫之间需要通信合作,共同完成任务,不要重复爬取相同的网页。分派任务时我们要做到公平公正,就需要考虑如何进行负载均衡。负载均衡,我们第一个想到的就是Hash,比如根据网站域名进行hash。
负载均衡分派完任务之后,并不意味着万事大吉了,万一哪台机器崩溃了呢?原先指派给崩溃的那台机器的任务应该再指派给哪台机器?又或者哪天要增加几台机器,任务重新分配问题该如何解决?
用一致性Hash算法就是一个比较好的解决方案。
2)如何对待待抓取队列
类似于操作系统如何调度进程的场景。
不同的网站,重要程度不同,因此,可以设计一个优先级队列来存放待爬取的网页链接。这样一来,每次抓取时,重要的网页都会被我们优先爬取。
另外,你也可以效仿操作系统的进程调度策略之多级反馈队列调度算法。
3)进行DNS缓存
为了避免每次都发起DNS查询,我们可以将DNS进行缓存。DNS缓存当然是设计一个hash表来存储已有的域名及其 IP 。
4)进行网页去重
说到网页去重,应该都会想到垃圾邮件过滤。垃圾邮件过滤的一个经典的解决方案是Bloom Filter(布隆过滤器)。布隆过滤器原理简单来说就是:建立一个大的位数组,然后用多个Hash函数对同一个url进行hash得到多个数字,然后将位数组中这些数字对应的位置为1。下次再来一个url时,同样是用多个Hash函数进行hash,得到多个数字,我们只需要判断位数组中这些数字对应的为是全为1,如果全为1,那么说明这个url已经出现过。如此,便完成了url去重的问题。不过,这种方法会有误差,但是只要误差在我们的接受范围之内,就像是1万个网页,我们只爬取到了9999个,剩下那1个网页,谁在乎呢!
5)数据存储的问题
数据存储同样是一个很有技术含量的问题。用关系数据库存取还是用NoSQL,或者是自己设计特定的文件格式进行存储,都有很大工程可做。
6)如何完成进程间通信
分布式爬虫,离不开进程间的通信。我们可以以规定的数据格式进行数据交互,去完成进程间的通信。
数据分析咨询请扫描二维码
Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17