大数据时代,这项收集数据的技能不可少
大数据是未来的“新石油”。《人类简史:从动物到上帝》的作者尤瓦尔·赫拉利说:大数据将是人类自由意志的终结,数据主义将取代以往的宗教和人文主义,成为未来的信仰。人人都在谈大数据,谈DT时代,我们剥去社会附加上的外衣,则回归“数据”二字。
那如何获取数据呢?
在运营公众号这么长一段时间,经常有人问超模君:超模君,我需要什么的数据,该怎么处理,或者直接问超模君,能不能给我提供一些数据?
其实超模君内心是奔溃的。。。而一般我给出的建议如果没有整理好的数据,可以尝试做个爬虫试试。而在获取数据的道路上并不简单,爬虫可谓是“麻雀虽小,五脏俱全”,爬虫虽然操作起来很简单,用十几行脚本语言就可以搞定,但其中可涉及到网络通信,字符串处理,数据库等,能使用到一种语言的几乎所有组件。
一言不合就上代码
我们先来看一个最简单的最简单的爬虫,用python写成,只需要三行。
import requests
url="http://www.cricode.com"
r=requests.get(url)
上面这三行爬虫程序,就如下面这三行情诗一般,很干脆利落。
是好男人,
就应该在和女友吵架时,
抱着必输的心态。
上面那个最简单的爬虫,不是一个完整的爬虫,因为爬虫通常需要以下3个步骤:
1)给定的种子URLs,爬虫程序将所有种子URL页面爬取下来
2)爬虫程序解析爬取到的URL页面中的链接,将这些链接放入待爬取URL集合里
3)重复1、2步,直到达到指定条件才终止爬取
因此,一个完整的爬虫大概是这样子的:
import requests #用来爬取网页
from bs4 import BeautifulSoup #用来解析网页
seds = ["http://www.hao123.com", #我们的种子
"http://www.csdn.net",
"http://www.cricode.com"]
sum = 0 #我们设定终止条件为:爬取到100000个页面时,就不玩了
while sum < 10000 :
if sum < len(seds):
r = requests.get(seds[sum])
sum = sum + 1
do_save_action(r)
soup = BeautifulSoup(r.content)
urls = soup.find_all("href",.....) //解析网页
for url in urls:
seds.append(url)
else:
break
上面那个完整的爬虫,不足20行代码,相信你能找出20个需要改进的地方来。因为它的缺点实在是太多了。下面列举一下它的N个缺点:
1)我们的任务是爬取1万个网页,按上面这个程序,一个人在默默的爬取,假设爬起一个网页3秒钟,那么,爬一万个网页就要3万秒钟。MGD,我们可以考虑开启多个线程去一起爬取,或者用分布式架构去并发地爬取网页。
2)种子URL和后续解析到的URL都放在一个列表里,我们应该将这些待爬取的URL存放到一个新的更合理的数据结构里,例如队列或者优先队列。
3)对各个网站的URL,我们一视同仁,然而,我们应该是要区别对待的。应当考虑大站好站优先原则。
4)我们每次发起请求,都是根据URL来发起的,而在这个过程中会牵涉到DNS解析(将URL转换成 IP 地址)。一个网站通常有数以万计的URL,所以我们可以考虑将这些网站域名的 IP 地址进行缓存,避免每次都发起DNS请求,浪费时间。
5)解析到网页中的URLs后,我们没有做任何去重处理,全部放入了待爬取的列表中。事实上,可能有很多链接是重复的,我们做了很多无用功。
6)…..
那么,真正的问题来了,学挖掘机到底哪家强?
现在我们就来列出上面找出的几个问题的解决方案。
1)如何做到并行爬取
我们可以有多重方法去实现并行。
多线程或者线程池方式,一个爬虫程序内部开启多个线程。同一台机器开启多个爬虫程序,这样,我们就有N多爬取线程在同时工作。能大大缩短时间。
此外,当我们要爬取的任务特别多时,一台机器、一个网点明显不够,这时我们就要考虑分布式爬虫了。常见的分布式架构有:主从(Master——Slave)架构、点对点(Peer to Peer)架构,混合架构等。
说到分布式架构,我们需要考虑的问题就有很多,比如我们需要分派任务,各个爬虫之间需要通信合作,共同完成任务,不要重复爬取相同的网页。分派任务时我们要做到公平公正,就需要考虑如何进行负载均衡。负载均衡,我们第一个想到的就是Hash,比如根据网站域名进行hash。
负载均衡分派完任务之后,并不意味着万事大吉了,万一哪台机器崩溃了呢?原先指派给崩溃的那台机器的任务应该再指派给哪台机器?又或者哪天要增加几台机器,任务重新分配问题该如何解决?
用一致性Hash算法就是一个比较好的解决方案。
2)如何对待待抓取队列
类似于操作系统如何调度进程的场景。
不同的网站,重要程度不同,因此,可以设计一个优先级队列来存放待爬取的网页链接。这样一来,每次抓取时,重要的网页都会被我们优先爬取。
另外,你也可以效仿操作系统的进程调度策略之多级反馈队列调度算法。
3)进行DNS缓存
为了避免每次都发起DNS查询,我们可以将DNS进行缓存。DNS缓存当然是设计一个hash表来存储已有的域名及其 IP 。
4)进行网页去重
说到网页去重,应该都会想到垃圾邮件过滤。垃圾邮件过滤的一个经典的解决方案是Bloom Filter(布隆过滤器)。布隆过滤器原理简单来说就是:建立一个大的位数组,然后用多个Hash函数对同一个url进行hash得到多个数字,然后将位数组中这些数字对应的位置为1。下次再来一个url时,同样是用多个Hash函数进行hash,得到多个数字,我们只需要判断位数组中这些数字对应的为是全为1,如果全为1,那么说明这个url已经出现过。如此,便完成了url去重的问题。不过,这种方法会有误差,但是只要误差在我们的接受范围之内,就像是1万个网页,我们只爬取到了9999个,剩下那1个网页,谁在乎呢!
5)数据存储的问题
数据存储同样是一个很有技术含量的问题。用关系数据库存取还是用NoSQL,或者是自己设计特定的文件格式进行存储,都有很大工程可做。
6)如何完成进程间通信
分布式爬虫,离不开进程间的通信。我们可以以规定的数据格式进行数据交互,去完成进程间的通信。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-04在现代商业环境中,数据分析师的角色愈发重要。数据分析师通过解读数据,帮助企业做出更明智的决策。因此,考取数据分析师证书成为了许多人提升职业竞争力的选择。本文将详细介绍考取数据分析师证书的过程,包括了解证书种类和 ...
2025-03-03在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2025-03-03数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-03-032025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-03-03大数据分析师培训旨在培养学员掌握大数据分析的基础知识、技术及应用能力,以适应企业对数据分析人才的需求。根据不同的培训需求 ...
2025-03-03小伙伴们,最近被《哪吒2》刷屏了吧!这部电影不仅在国内掀起观影热潮,还在全球范围内引发了关注,成为中国电影崛起的又一里程 ...
2025-03-03以下的文章内容来源于张彦存老师的专栏,如果您想阅读专栏《Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)》,点 ...
2025-02-28最近,国产AI模型DeepSeek爆火,其创始人梁文峰走进大众视野。《黑神话:悟空》制作人冯骥盛赞DeepSeek为“国运级别的科技成果” ...
2025-02-271.统计学简介 听说你已经被统计学劝退,被Python唬住……先别着急划走,看完这篇再说! 先说结论,大多数情况下的学不会都不是知 ...
2025-02-27“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩稳定, ...
2025-02-26在数据分析工作中,你可能经常遇到这样的问题: 从浏览到消费的转化率一直很低,那到底该优化哪里呢? 如果你要投放广告该怎么 ...
2025-02-25近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的,尤 ...
2025-02-25挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-25在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-25以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-25“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-25在数据分析中,地图是一种非常直观的可视化工具,能够帮助我们更好地理解数据在地理空间上的分布情况。无论是展示销售数据、人口 ...
2025-02-25春风拂面,金三银四的求职季如期而至。谁都想在这场竞争里拿下心仪offer。 一份亮眼简历是求职敲门砖,面试紧张则可能让机会溜 ...
2025-02-24