自18世纪以来,人类经历了三次重大的技术革命。前两次技术革命,通过有形实物资本积累推动的资本深化进程,构成了经济增长的主要动力。
信息技术革命的核心技术是计算机技术和基于计算机技术的互联网。然而,在人类生产、贸易和生活方式的改造上,信息技术革命的典型特征是什么呢?如果说是互联网普及后整个经济社会的网络化,现在的互联网似乎仅仅是第二次工业革命中经济社会“网络化”的延续。更为关键的是,如果这是一场革命,我们应该观察到单位劳动时间上的产出增长。根据很多研究,,上世纪90年代以来的单位产出增速实际上要大大慢于第二次工业革命时期。
与如今IT界普遍的技术乐观情绪不同,经济学界看起来更想提出一个冷静的问题:信息技术革命是“革命”吗?技术革命并非简单的技术发明,而是这种发明在经济中的广泛运用,并最终全面、彻底取代一切陈旧的东西。对此,前两次革命中,我们都可以观察到一个重要的现象:技术发明与这种技术的广泛运用之间存在明显的时滞——短则几十年,长则上百年。
既然技术的普遍运用要滞后于技术发明本身,那么,以计算机、尤其是互联网为核心技术发明的信息技术革命究竟何时才能在经济、社会发展中引发真正的革命呢?回答这个问题的前提是找到信息技术革命改造人类生产、贸易和生活方式的典型特征——“用数据(data)生产信息(information)和知识(knowledge)”。
现代电子通讯技术和网络与工业革命时期的电报电话技术及经济社会网络存在根本性的不同:虽然都是技术进步推动的网络化,但前者除了在网络化的程度上远非后者可比之外,更是通过从模拟技术到数字技术的转化,实现了数字化(digitalization)——有人称之为“数字革命”。随着传感技术、存储技术和计算技术的发展,在现代网络中,所有相互作用都会留下可以存储、处理的数字足迹。这些数据在规模和种类上远远超出了常规技术能够存储和处理的能力,从而被称作所谓的“大数据”。
“大数据”是近几年来愈发时髦的概念。虽然并无统一定义,但其特征可以用四个“V”来界定,即数据量大(Volume)、数据处理速度快(Velocity)、数据类型多样(Variety)、数据价值(Value)。经济金融理论界和实务界,对大量(Volume)、实时(Velocity)数据的处理和分析并不陌生,但大数据在规模和速度上与以往的数据类型存在量级的差异,更为不同之处在于数据类型的多样性:大数据需要处理的对象不仅包括传统的结构化数据(如股市交易时间序列、GDP等),还包括许多非结构化数据(如视频、音频、文本信息等),后者的数据规模和增长速度远高于前者,且处理这两类数据的技术和理论都是不一样的。
如同几百年前欧洲人“发现”了新大陆和新大陆上令人垂涎的金矿资源一样,数字革命的结果就是新大陆上的新金矿——大数据。在所有人和物都可能被网络化,并在数字空间留下数字足迹的时代,需要始终记住的一个基本观念是:数据是资产。不过,获取大数据的目的首先在于通过分析产生信息,而从数据到信息的过程需要有IT技术的支持,这包括:数据存储和查询技术、数据处理技术、数据应用技术等。
与以往以有形的实物资本积累推动的资本深化和“实物资本表现型技术进步”不同,信息技术革命的“革命性”集中表现在数据资产大规模累积、并变成能够直接加入到生产函数中的数据资本的过程。从数据资产的积累到数据资本的形成,至少从三个方面形成了降低成本、提高生产率的效应:
第一,信息透明度的可得性大大提高,从而极大地降低交易成本,使得企业识别客户、管理内部流程的效率得到极大提高,宏观经济的管理能力也将出现飞跃式上升。在零售业、电子商务和制造业,客户分层、客户体验、量身定制正在成为潮流;而在宏观经济层面,随着实时、大量数据的产生和运用,过去基于月度、季度、甚至年度的过时经济预测将会变成对经济总体状况实时把握的即时播报。
第二,企业和社会的风险管理能力得到极大的提高。在企业层面,风险管理能力的提高显然是降低错误投资的概率、提升生产率的有效手段;在宏观经济层面,一个典型的例子是如果能够利用大数据,将雷曼兄弟公司这样的企业视为一个网络关键节点或者连接不同子网络的关键“桥”(bridge),来分析和把握其系统重要性,或可避免危机带来的巨大损失。
第三,正在并将继续形成新的生产、生活和交易方式。贸易和生产制造领域已经演化出了以网络为基础新的营销、仓储、供应链和市场组织形式,而基于“实体经济”的金融业也在发生深刻变革。例如,过去几年我国诞生的所谓“互联网金融”,如果摒弃其中“网上高利贷”的泡沫,可以发现,诸如阿里巴巴这样的企业正是利用了电子商务过程中产生的大数据,让这些数据成为企业增殖的数据资本。
在数据资产的积累和数据资本形成过程中,两个自然的问题是:谁拥有这样的数据资产?谁能够将数据资产变成数据资本?从国家层面看,这涉及到21世纪全球实力格局的再造。根据麦肯锡的统计,2010年北美、欧洲、日本新储存的数据分别达到3500、2000和400 拍字节(petabyte),我国只有250拍字节。作为全球名义GDP的第二大经济体,我国在数据资产的积累方面处于大大落后的状态。数据处理和分析能力是数据资产变成数据资本的前提,就此能力而言,人才是重中之重。
未来是属于大数据时代的。数据资产的积累、数据资本的形成及其推动的数据资本深化和“数据资本表现型技术进步”将成为人类经济社会发展的新大陆。在《万历十五年》中,黄仁宇说中国人不擅“数目字管理”。希望在这一次,我们能够吸取教训。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28