自18世纪以来,人类经历了三次重大的技术革命。前两次技术革命,通过有形实物资本积累推动的资本深化进程,构成了经济增长的主要动力。
信息技术革命的核心技术是计算机技术和基于计算机技术的互联网。然而,在人类生产、贸易和生活方式的改造上,信息技术革命的典型特征是什么呢?如果说是互联网普及后整个经济社会的网络化,现在的互联网似乎仅仅是第二次工业革命中经济社会“网络化”的延续。更为关键的是,如果这是一场革命,我们应该观察到单位劳动时间上的产出增长。根据很多研究,,上世纪90年代以来的单位产出增速实际上要大大慢于第二次工业革命时期。
与如今IT界普遍的技术乐观情绪不同,经济学界看起来更想提出一个冷静的问题:信息技术革命是“革命”吗?技术革命并非简单的技术发明,而是这种发明在经济中的广泛运用,并最终全面、彻底取代一切陈旧的东西。对此,前两次革命中,我们都可以观察到一个重要的现象:技术发明与这种技术的广泛运用之间存在明显的时滞——短则几十年,长则上百年。
既然技术的普遍运用要滞后于技术发明本身,那么,以计算机、尤其是互联网为核心技术发明的信息技术革命究竟何时才能在经济、社会发展中引发真正的革命呢?回答这个问题的前提是找到信息技术革命改造人类生产、贸易和生活方式的典型特征——“用数据(data)生产信息(information)和知识(knowledge)”。
现代电子通讯技术和网络与工业革命时期的电报电话技术及经济社会网络存在根本性的不同:虽然都是技术进步推动的网络化,但前者除了在网络化的程度上远非后者可比之外,更是通过从模拟技术到数字技术的转化,实现了数字化(digitalization)——有人称之为“数字革命”。随着传感技术、存储技术和计算技术的发展,在现代网络中,所有相互作用都会留下可以存储、处理的数字足迹。这些数据在规模和种类上远远超出了常规技术能够存储和处理的能力,从而被称作所谓的“大数据”。
“大数据”是近几年来愈发时髦的概念。虽然并无统一定义,但其特征可以用四个“V”来界定,即数据量大(Volume)、数据处理速度快(Velocity)、数据类型多样(Variety)、数据价值(Value)。经济金融理论界和实务界,对大量(Volume)、实时(Velocity)数据的处理和分析并不陌生,但大数据在规模和速度上与以往的数据类型存在量级的差异,更为不同之处在于数据类型的多样性:大数据需要处理的对象不仅包括传统的结构化数据(如股市交易时间序列、GDP等),还包括许多非结构化数据(如视频、音频、文本信息等),后者的数据规模和增长速度远高于前者,且处理这两类数据的技术和理论都是不一样的。
如同几百年前欧洲人“发现”了新大陆和新大陆上令人垂涎的金矿资源一样,数字革命的结果就是新大陆上的新金矿——大数据。在所有人和物都可能被网络化,并在数字空间留下数字足迹的时代,需要始终记住的一个基本观念是:数据是资产。不过,获取大数据的目的首先在于通过分析产生信息,而从数据到信息的过程需要有IT技术的支持,这包括:数据存储和查询技术、数据处理技术、数据应用技术等。
与以往以有形的实物资本积累推动的资本深化和“实物资本表现型技术进步”不同,信息技术革命的“革命性”集中表现在数据资产大规模累积、并变成能够直接加入到生产函数中的数据资本的过程。从数据资产的积累到数据资本的形成,至少从三个方面形成了降低成本、提高生产率的效应:
第一,信息透明度的可得性大大提高,从而极大地降低交易成本,使得企业识别客户、管理内部流程的效率得到极大提高,宏观经济的管理能力也将出现飞跃式上升。在零售业、电子商务和制造业,客户分层、客户体验、量身定制正在成为潮流;而在宏观经济层面,随着实时、大量数据的产生和运用,过去基于月度、季度、甚至年度的过时经济预测将会变成对经济总体状况实时把握的即时播报。
第二,企业和社会的风险管理能力得到极大的提高。在企业层面,风险管理能力的提高显然是降低错误投资的概率、提升生产率的有效手段;在宏观经济层面,一个典型的例子是如果能够利用大数据,将雷曼兄弟公司这样的企业视为一个网络关键节点或者连接不同子网络的关键“桥”(bridge),来分析和把握其系统重要性,或可避免危机带来的巨大损失。
第三,正在并将继续形成新的生产、生活和交易方式。贸易和生产制造领域已经演化出了以网络为基础新的营销、仓储、供应链和市场组织形式,而基于“实体经济”的金融业也在发生深刻变革。例如,过去几年我国诞生的所谓“互联网金融”,如果摒弃其中“网上高利贷”的泡沫,可以发现,诸如阿里巴巴这样的企业正是利用了电子商务过程中产生的大数据,让这些数据成为企业增殖的数据资本。
在数据资产的积累和数据资本形成过程中,两个自然的问题是:谁拥有这样的数据资产?谁能够将数据资产变成数据资本?从国家层面看,这涉及到21世纪全球实力格局的再造。根据麦肯锡的统计,2010年北美、欧洲、日本新储存的数据分别达到3500、2000和400 拍字节(petabyte),我国只有250拍字节。作为全球名义GDP的第二大经济体,我国在数据资产的积累方面处于大大落后的状态。数据处理和分析能力是数据资产变成数据资本的前提,就此能力而言,人才是重中之重。
未来是属于大数据时代的。数据资产的积累、数据资本的形成及其推动的数据资本深化和“数据资本表现型技术进步”将成为人类经济社会发展的新大陆。在《万历十五年》中,黄仁宇说中国人不擅“数目字管理”。希望在这一次,我们能够吸取教训。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11