
自18世纪以来,人类经历了三次重大的技术革命。前两次技术革命,通过有形实物资本积累推动的资本深化进程,构成了经济增长的主要动力。
信息技术革命的核心技术是计算机技术和基于计算机技术的互联网。然而,在人类生产、贸易和生活方式的改造上,信息技术革命的典型特征是什么呢?如果说是互联网普及后整个经济社会的网络化,现在的互联网似乎仅仅是第二次工业革命中经济社会“网络化”的延续。更为关键的是,如果这是一场革命,我们应该观察到单位劳动时间上的产出增长。根据很多研究,,上世纪90年代以来的单位产出增速实际上要大大慢于第二次工业革命时期。
与如今IT界普遍的技术乐观情绪不同,经济学界看起来更想提出一个冷静的问题:信息技术革命是“革命”吗?技术革命并非简单的技术发明,而是这种发明在经济中的广泛运用,并最终全面、彻底取代一切陈旧的东西。对此,前两次革命中,我们都可以观察到一个重要的现象:技术发明与这种技术的广泛运用之间存在明显的时滞——短则几十年,长则上百年。
既然技术的普遍运用要滞后于技术发明本身,那么,以计算机、尤其是互联网为核心技术发明的信息技术革命究竟何时才能在经济、社会发展中引发真正的革命呢?回答这个问题的前提是找到信息技术革命改造人类生产、贸易和生活方式的典型特征——“用数据(data)生产信息(information)和知识(knowledge)”。
现代电子通讯技术和网络与工业革命时期的电报电话技术及经济社会网络存在根本性的不同:虽然都是技术进步推动的网络化,但前者除了在网络化的程度上远非后者可比之外,更是通过从模拟技术到数字技术的转化,实现了数字化(digitalization)——有人称之为“数字革命”。随着传感技术、存储技术和计算技术的发展,在现代网络中,所有相互作用都会留下可以存储、处理的数字足迹。这些数据在规模和种类上远远超出了常规技术能够存储和处理的能力,从而被称作所谓的“大数据”。
“大数据”是近几年来愈发时髦的概念。虽然并无统一定义,但其特征可以用四个“V”来界定,即数据量大(Volume)、数据处理速度快(Velocity)、数据类型多样(Variety)、数据价值(Value)。经济金融理论界和实务界,对大量(Volume)、实时(Velocity)数据的处理和分析并不陌生,但大数据在规模和速度上与以往的数据类型存在量级的差异,更为不同之处在于数据类型的多样性:大数据需要处理的对象不仅包括传统的结构化数据(如股市交易时间序列、GDP等),还包括许多非结构化数据(如视频、音频、文本信息等),后者的数据规模和增长速度远高于前者,且处理这两类数据的技术和理论都是不一样的。
如同几百年前欧洲人“发现”了新大陆和新大陆上令人垂涎的金矿资源一样,数字革命的结果就是新大陆上的新金矿——大数据。在所有人和物都可能被网络化,并在数字空间留下数字足迹的时代,需要始终记住的一个基本观念是:数据是资产。不过,获取大数据的目的首先在于通过分析产生信息,而从数据到信息的过程需要有IT技术的支持,这包括:数据存储和查询技术、数据处理技术、数据应用技术等。
与以往以有形的实物资本积累推动的资本深化和“实物资本表现型技术进步”不同,信息技术革命的“革命性”集中表现在数据资产大规模累积、并变成能够直接加入到生产函数中的数据资本的过程。从数据资产的积累到数据资本的形成,至少从三个方面形成了降低成本、提高生产率的效应:
第一,信息透明度的可得性大大提高,从而极大地降低交易成本,使得企业识别客户、管理内部流程的效率得到极大提高,宏观经济的管理能力也将出现飞跃式上升。在零售业、电子商务和制造业,客户分层、客户体验、量身定制正在成为潮流;而在宏观经济层面,随着实时、大量数据的产生和运用,过去基于月度、季度、甚至年度的过时经济预测将会变成对经济总体状况实时把握的即时播报。
第二,企业和社会的风险管理能力得到极大的提高。在企业层面,风险管理能力的提高显然是降低错误投资的概率、提升生产率的有效手段;在宏观经济层面,一个典型的例子是如果能够利用大数据,将雷曼兄弟公司这样的企业视为一个网络关键节点或者连接不同子网络的关键“桥”(bridge),来分析和把握其系统重要性,或可避免危机带来的巨大损失。
第三,正在并将继续形成新的生产、生活和交易方式。贸易和生产制造领域已经演化出了以网络为基础新的营销、仓储、供应链和市场组织形式,而基于“实体经济”的金融业也在发生深刻变革。例如,过去几年我国诞生的所谓“互联网金融”,如果摒弃其中“网上高利贷”的泡沫,可以发现,诸如阿里巴巴这样的企业正是利用了电子商务过程中产生的大数据,让这些数据成为企业增殖的数据资本。
在数据资产的积累和数据资本形成过程中,两个自然的问题是:谁拥有这样的数据资产?谁能够将数据资产变成数据资本?从国家层面看,这涉及到21世纪全球实力格局的再造。根据麦肯锡的统计,2010年北美、欧洲、日本新储存的数据分别达到3500、2000和400 拍字节(petabyte),我国只有250拍字节。作为全球名义GDP的第二大经济体,我国在数据资产的积累方面处于大大落后的状态。数据处理和分析能力是数据资产变成数据资本的前提,就此能力而言,人才是重中之重。
未来是属于大数据时代的。数据资产的积累、数据资本的形成及其推动的数据资本深化和“数据资本表现型技术进步”将成为人类经济社会发展的新大陆。在《万历十五年》中,黄仁宇说中国人不擅“数目字管理”。希望在这一次,我们能够吸取教训。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23