
sas批量删除重复超过90%的变量
22年前的今天我的妈咪把我带来这个世界,费尽心思把我养到这么大,我就是4月份出生的大白羊,我的生日愿望呢,就是想有个大神在留言板块教我一个怎么识别组合变量更好解释因变量的方法,譬如我怎么知道年龄和婚姻两个变量在一起的效果比单个的效果还要好,但是年龄和性别组合效果并没有那么好。跪求大神实现我的生日愿望吧。
今天还是没有要更新信用评分的内容,更新的内容是关于变量处理中的问题,之前的文章中有过变量处理的章节,这篇文章是对那篇的补充,之前讲过我会把缺失值达到70%的变量删掉。我漏掉一个问题就是变量的重复值达到90%也应该删掉,譬如一个变量有5中情况:ABCDE,但是A的情况的占比就达到90%的时候,除非这个变量剩下的10%全部都是逾期的,不然这样的变量是没有意义,所以今天分享的代码就是批量找出这些变量并在原数据集中删掉。这次的代码也是陈先生提供的。我在陈先生代码的基础上做了一些改动并调试了。
话不多说,上代码:
%macrovar_namelist(data=,tarvar=,dsor=);
%letlib=%upcase(%scan(&data.,1,'.'));
%letdname=%upcase(%scan(&data.,2,'.'));
%globalvar_list var_num;
proc sql ;
create table &dsor.as
select name
from sashelp.VCOLUMN
where left(libname)="&lib."and left(memname)="&dname."and lowcase(name)^=lowcase("&tarvar.");
quit;
%mend;
%macrotest(data,tarvar,data_result,data_drop,rate);
proc datasets lib=work;
delete base;
run;
data base;
length variable$100.;
run;
%var_namelist(data=&data.,/*coltype=num,*/tarvar=&tarvar.,dsor=aa);
data _null_;
set aa;
call symput(compress("var"||left(_n_)),compress(name));
call symput(compress("n"),compress(_n_));
run;
%put&n.;
%doi=1%to&n.;
%put&&var&i.;
proc freq data=&data.(keep=&&var&i.) noprint;
tables &&var&i./out=PERCENT_&&var&i.;
/*(keep=PERCENT)*/
run;
proc sql;
select max(PERCENT) into: max_percent from
PERCENT_&&var&i.;
quit;
%if&max_percent>&rate.%then%do;
data next;
variable="&&var&i.";
run;
proc append base=base data=next force;
run;
%end;
proc datasets lib=work noprint;
delete PERCENT_&&var&i.;
run;
%end;
data base;
set base(where=(variable^=''));
run;
proc transpose data=base out=base1(drop=_name_);
id variable;
run;
/*这步是删除单一变量超过90的重复值的缺失值的可以按照这个写下*/
proc sql noprint;
select name into :var_list separated by' '
from sashelp.VCOLUMN
where upcase(left(libname))="WORK"and UPCASE(left(memname))="BASE1";
quit;
%PUT&var_num1.;
data &data_result.;
set &data.;
drop &var_list.;
run;
data &data_drop.;
set &data.;
keep &tarvar.&var_list.;
run;
%mend;
第一宏不用管,那是为了嵌套在第二个宏里面的。那么接下来介绍下这个宏怎么用。
test(data,tarvar,data_result,data_drop,rate);
data:填入的原数据集。
Tarvar:填入你不想要统计的变量。可以是你的主键也可以是你的因变量,随便你。像我填入的是因变量。
data_result:结果数据集,你的结果数据想叫什么就填什么把。
Data_drop:删掉的变量存放的数据集,给你检查一下有没有错删变量。
Rate:填入的是你觉得重复值达到多少的时候就删掉。我建议的80-90。
下周分享的一个变量人工分段的一个代码。这个代码是我当下除了最优分段之外觉得好用的代码,因为最优分段需要做异常值的检查。有时候异常值检查不好,容易分组的分的不好。这是我个人的经验哈,对于变量分段我之前很崇尚自动分组,我觉得那么多的变量,我一个一个的去细看这无非浪费我的时间,但是我失败的经验告诉我,模型的过程每一步的都应该细致并且仔细,该人工的时候还是要人工,如果全部可以全自动化,那么只要自动运行代码就可以了,谁都可以建模了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10