京公网安备 11010802034615号
经营许可证编号:京B2-20210330
sas字符变量基于bad_rate分组
最近因为模型拟合的不理想的原因,sas信用评分的内容可能要停更一两周了,因为我还没能进行到模型评分卡这一步就被跨期验证给拍下来了,我做的模型,训练的数据以及测试的数据指标都还不错,跨期验证指标掉的厉害。希望有经验的大神可以在留言区给我点建议,因为你们的建议可以让我少走很多弯路。我现在要重新调整,至于怎么调整的内容,我后面会做一个总结的文章,讲对于指标达不到指标的时候可以有什么方便调整下指标,在这些方法之后还调整不了指标的再回头看变量。
这次分享的代码是字符变量依据bad_rate做的一个分组。之前分享过给予基尼系数,给予iv值的,那么这次就叫基于bad_rate的吧。这次的代码可能会比之前的代码容易理解很多,而这次的代码也是我的partner陈先生写的。不要问我陈先生是谁,这是个秘密。
%macrodatasplit(data,target,group);
proc sql;
create table csm_CASH_MODEL_Train_rank1(
table_name varchar(100)
,col_name varchar(50)
,rank_name numeric
,low numeric
,up numeric
,cnt numeric
,rate numeric
,n1 numeric
,bad_rate numeric
,woe numeric
,iv numeric
,split_type numeric);
quit;
proc sql;
create table csm_CASH_MODEL_Train_rank2(
table_name varchar(100)
,col_name varchar(50)
,rank_name varchar(2000)
,lownumeric ,, ,up numeric
,cnt numeric
,rate numeric
,n1 numeric
,bad_rate numeric
,woe numeric
,iv numeric
,split_type numeric);
quit;
proc sql;/*获得总记录数、总坏客户数、总好客户数*/
select count(*),SUM(&target.),count(*)-SUM(&target.) into :record_cnt,
:bad_cnt,
:good_cnt
from &data.;
quit;
proc contents/*获取输入数据集的所有变量信息*/
data=&data.
out=CASH_SELECT_MODEL_VALID_V10_CONT
noprint;
run;
data CASH_SELECT_MODEL_VALID_V10_CONT;
set CASH_SELECT_MODEL_VALID_V10_CONT;
where name ^='&target.';
run;
data _null_;
set CASH_SELECT_MODEL_VALID_V10_CONT;
call symput(compress("numobs"),compress(_n_));
run;
%doi=1%to&numobs;
%put&NUMOBS.||&i.;
data _null_;
pointer=&i.;
set CASH_SELECT_MODEL_VALID_V10_CONT POINT=POINTER;
call symput('col_name', NAME);
call symput('TYPE', put(TYPE,1.));
stop;
run;
%if&TYPE.=2%then%do;
proc sql;
create table &col_name.as select
&col_name.
,sum(&target.)/count(1) as bad_rate
,sum(&target.) as &target.
,count(1) as num
from &data.
group by &col_name.;
quit;
%put&col_name;
%put&type;
proc sql;
select count(1) into:valuenum from &col_name;
quit;
%if&valuenum.>&group.%then%do;
proc rank data= &col_name out = data_rank ties = mean groups = &group.descending;
var bad_rate;
ranks group_name;
run;
proc sql;
create table &data.as
select *,
b.group_name as new_&col_name.
from &data.a
left join data_rank b
ona.&col_name.=b.&col_name.;
quit;
proc sql;
insert into csm_CASH_MODEL_Train_rank1(table_name ,col_name ,rank_name ,low ,up,cnt,rate,n1,bad_rate,woe,iv,split_type)
select"csm_CASH_MODEL_Train_rank","&col_name",group_name ,min(bad_rate) ,max(bad_rate) ,sum(num)
,sum(num)/&record_cnt
,sum(&target.)
,sum(&target.)/sum(num)
,log((ifn(sum(&target.)=0,0.001,sum(&target.))/&bad_cnt)/((sum(num)-sum(&target.))/&good_cnt))
,(sum(&target.)/&bad_cnt-(sum(num)-sum(&target.))/&good_cnt)*log((ifn(sum(&target.)=0,0.001,sum(&target.))/&bad_cnt)/((sum(num)-sum(&target.))/&good_cnt))
,&group.
from data_rank
group by group_name;
quit;
%end;
%if&valuenum.<=&group.%then%do;
proc sql;
insert into csm_CASH_MODEL_Train_rank2( table_name ,col_name ,rank_name ,low,up,cnt,rate ,n1 ,bad_rate,woe ,iv ,split_type)
select"csm_CASH_MODEL_Train_rank","&col_name",&col_name.,min(bad_rate) ,max(bad_rate) ,sum(num),sum(num)/&record_cnt
,sum(&target.),sum(&target.)/sum(num)
,log((ifn(sum(&target.)=0,0.001,sum(&target.))/&bad_cnt)/((sum(num)-sum(&target.))/&good_cnt))
,(sum(&target.)/&bad_cnt-(sum(num)-sum(&target.))/&good_cnt)*log((ifn(sum(&target.)=0,0.001,sum(&target.))/&bad_cnt)/((sum(num)-sum(&target.))/&good_cnt))
,&valuenum
from &col_name.
group by &col_name.;
quit;
%end;
%end;
%end;
data csm_CASH_MODEL_Train_rank1;
set csm_CASH_MODEL_Train_rank1;
rank_name1=put(rank_name,$8.);
drop rank_name;
rename rank_name1=rank_name;
run;
data csm_CASH_MODEL_Train_rank;
set csm_CASH_MODEL_Train_rank1 csm_CASH_MODEL_Train_rank2;
run;
%mend;
关于这个代码的使用呢,就是下面这样子啦。
Data:填入你的数据集,重点来啦,这个数据集也是等下的产出的数据集,所以你突然觉得,惨了,我拿错数据集,那么你就得重新跑下这个数据集,因为经过这个过程他已经被改变了。
Target:因变量
Group;你要分的组数。
还有说下这个代码,因为是针对字符的分组,就意味着要是有点变量的观测情况就只用3种,那怎么分五组呢,譬如性别啊,你活生生的要是把男女分成5组,这就不道德了哈,所以代码中对于观测情况少于你的分组数的就不分组了。
说下结果哈:
变量指标统计表:
产出的表中就有图中的这些指标,low以及up是bad_rate的区间。Cnt是分组统计的人数,n1是坏客户的数量。后面的split_type是分成几组。宏里面设定的5组,所以显示的是5。
码表:
这张表是码表。名字为每个变量的名字,譬如你这个变量叫loan_cnt,那么你找到一个数据叫loan_cnt就是loan_cnt的码表。这个码表不是你等下一个一个按照主表去leftjoin的哈。这个主表只要是想你之后要生成评分或者做数据集验证的时候可以用的。数据分析师培训
最后就是主表:
为什么刚才说码表不是主表连的呢,因为生成的主表里面已经有新的分组,new_开头的就是新生成的变量。便于后面的区分。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23