SAS、R如何手动输入数据
一道简单的题目,将下面的数据分别手动输入到SAS和R中,如何实现?
一、SAS
解决方案:
data cust_base_info;
inputcust_no$ name$sex$ is_marriage$birthday:yymmdd10.aum_m_avgods_date:yymmdd10.@@;
format birthday yymmdd10. ods_date yymmdd10.;
cards;
1LiMingMaleTRUE1984052151428.0620170331
2ZhangHongyiFemaleTRUE198201285203.420170331
3WangSimingMaleFALSE19830806214820170331
4ZhangCongMaleTRUE19830225110092.820170331
5LiuYingFemaleTRUE1988092038004.520170331
6MaMingyueFemaleFALSE198910191168020170331
;
run;
结果:
备注:
(1)字符型的变量需要在变量名后加上'$'符,比如:'cust_no$','name$';数值型变量就不需要,比如:'aum_m_avg'。
(2)日期型的变量,比如'birthday',需要加上相应的格式,比如:'birthday:yymmdd10.'和'format birthday yymmdd10.'。
(3)'@@'表示即时输入时不换行,SAS按照输入的顺序依次读取数据。
二、R语言
解决方案:
##在R中手动输入数据
cust_no <- c('1','2','3','4','5','6')
name<-c('LiMing','ZhangHongyi','WangSiming','ZhangCong','LiuYing','MaMingyue')
sex<-c('Male','Female','Male','Male','Female','Female')
is_marriage<-c('True','True','False','True','True','False')
##R语言中日期的默认输入格式为yyyy-mm-dd
birthday <- c('1984-05-31','1982-01-28','1983-08-06','1983-02-25','1988-09-20','1989-10-19')
##将日期的类型由字符型转化为date型
birthday <- as.Date(birthday)
aum_m_avg<- c(51428.06,5203.4,2148,110092.8,38004.5,11680)
##数据处理日期,由字符型转为date型
ods_date<- as.Date(rep('2017-03-31',6))
cust_base_info<- data.frame(cust_no,name,sex,is_marriage,birthday,aum_m_avg,ods_date)
##查看数据前6行
head(cust_base_info)
结果:
三、小结
手动输入数据,数值型变量最好处理,字符型变量加些格式,也好处理。难点在于日期的输入。
1、SAS中,需要在input时在变量后面加上特殊的日期格式,比如'ods_date:yymmdd10.'和'format ods_date yymmdd10.'。
2、R语言中,默认的输入格式是'yyyy-mm-dd',比如'1984-05-31'。输入完成后,因为它是字符型变量,需要将它用as.Date()函数转化为date型,例如birthday <- as.Date(birthday)。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21