
当前对文本挖掘的需求越来越多,而基于文本挖掘又可以实现舆情监控、文本分类、关联分析和趋势预测等。
本文主要使用李舰发布的中文分词包Rwordseg。该包引用了@ansj开发的ansj中文分词工具,基于中科院的ictclas中文分词算法,无论是分词准确度、自定义词典的方便程度还是运行的效率都大大地超过了rmmseg4j。该包使用rJava调用Java分词工具Ansj,因此需要进行rJava的设置才可以使用。
文中使用到Rwordseg包和tmcn包,这两个包目前不在R的镜像中,可以通过如下两种方式获得这两个包。
2、直接到R-Forge官网下载并安装,下载地址如下:
https://r-forge.r-project.org/R/?group_id=1054
https://r-forge.r-project.org/R/?group_id=1571
应用:
本文分析的对象为一篇新闻,来源于环球网的《习近平出席中美企业家座谈会》这篇文章,看看习大大这次访美都有哪些动向?
本文主要对这篇文章做如下两个工作:分词和绘制文字云。
#读取数据
news <- readLines('news.txt', encoding = 'UTF-8')
由于Rwordseg包中的segmentCN函数对某些词无法准确分词,需要自定义字典、指定人名识别及指定停止词。
#首先将台湾大学定义的字典导入到系统中,该字典中含有正面及负面的简体词和繁体词共22173个。
data(NTUSD)
positive_simple <- NTUSD[[1]]
negtive_simple <- NTUSD[[2]]
positive_tradition <- NTUSD[[3]]
negtive_tradition <- NTUSD[[4]]
insertWords(positive_simple)
insertWords(negtive_simple)
insertWords(positive_tradition)
insertWords(negtive_tradition)
#其次将自定义的词导入系统
dir <- c('中美','两国','阿里巴巴','改革开放','腾讯','微软',
'双汇','亚马逊','星巴克','企业家','发展中','中国梦')
insertWords(dir)
#再者还需要指定人名识别
发现默认情况下,segmentCN函数并没有识别人名。
将人名识别设为TURE后,发现能够将名字准确分割出来。
#最后为分词函数segmentCN指定停止词,这样就不会把这些词识别为有效词
stopwords <- c('大','上','高','好','中','新','更','梦')
stopword <- stopwordsCN(stopwords = stopwords, useStopDic = TRUE)
当然这些准备工作是在探索文本内容的基础上完成的,这里只是想说明一下本文的思路。
使用segmentCN函数看一下分词效果:
词频分析
绘制文字云
从图中发现,本次习总书记访问美国,仍然强调的是中美之间的经济发展问题。
由于工作需要,自己刚开始研究文本挖掘,本文只是做了个文本的分词,关于文本挖掘还有许多知识需要学习,例如文本的聚类、关联规则、预测等。接下来的日子里将和文本挖掘扯上很大的关系啦。。。。
最后总结一下本文所涉及到的R包和函数:
tm包
insertWords()
tmcn包
getWordFreq()
Rwordseg包
getOption()
segment.options()
stopwordsCN()
segmentCN()
wordcloud包
wordcloud()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30