大数据存储服务选择指南 何谓大数据
磁盘存储就像是衣橱,永远不够用,在大数据时代,这一点尤为突出。“大数据”意味着需要比传统存储平台处理更多的数据。那么这对于CIO意味着什么呢?意味着他们将需要做出更多的努力,而可供参考的信息却很少。
不过,在为大数据选择存储服务时也并不是完全无迹可寻。
何谓大数据
首先,我们需要清楚大数据与其他类型数据的区别以及与之相关的技术(主要是分析应用程序)。大数据本身意味着非常多需要使用标准存储技术来处理的数据。大数据可能由TB级(或者甚至PB级)信息组成,既包括结构化数据(数据库、日志、SQL等)以及非结构化数据(社交媒体帖子、传感器、多媒体数据)。此外,大部分这些数据缺乏索引或者其他组织结构,可能由很多不同文件类型组成。
由于这些数据缺乏一致性,使标准处理和存储技术无计可施,而且运营开销以及庞大的数据量使我们难以使用传统的服务器和SAN方法来有效地进行处理。换句话说,大数据需要不同的处理方法:自己的平台,这也是Hadoop可以派上用场的地方。
Hadoop是一个开源分布式计算平台,它提供了一种建立平台的方法,这个平台由标准化硬件(服务器和内部服务器存储)组成,并形成集群能够并行处理大数据请求。在存储方面来看,这个开源项目的关键组成部分是Hadoop分布式文件系统(HDFS),该系统具有跨集群中多个成员存储非常大文件的能力。HDFS通过创建多个数据块副本,然后将其分布在整个集群内的计算机节点,这提供了方便可靠极其快速的计算能力。
从目前来看,为大数据建立足够大的存储平台最简单的方法就是购买一套服务器,并为每台服务器配备数TB级的驱动器,然后让Hadoop来完成余下的工作。对于一些规模较小的企业而言,可能只要这么简单。然而,一旦考虑处理性能、算法复杂性和数据挖掘,这种方法可能不一定能够保证成功。
你的存储架构
这一切都归结到所涉及的存储结构和网络性能。对于经常分析大数据的企业而言,可能需要一个单独的基础设施,因为随着集群中计算节点的数量的增长,带宽开销也会增长。通常情况下,使用HDFS的多模计算集群在处理大数据时将会产生大量流量。这是因为Hadoop在集群的成员服务器间传输数据(以及计算资源)。
在大多数情况下,基于服务器的本地存储并没有高效率的优点,这也是为什么很多企业转向使用高速光纤结构的SAN来最大限度地提高吞吐量。然而,SAN方法本身并不一定适合大数据部署。尤其是那些使用Hadoop的大数据部署,因为SAN承担集中硬盘上数据的责任,这反过来意味着每个计算服务器将需要访问相同的SAN来恢复正态分布的数据。
然而,当比较本地服务器存储和基于SAN的存储时,本地存储在两个方面占据优势:成本和整体性能。简而言之,没有在每个计算成员放置RAID的原始磁盘在处理HDFS请求时将胜过SAN,然而,基于服务器的磁盘存在缺点,主要是在可扩展性方面。
问题是当服务器依赖于本地存储时,你如何在必要的时候增加更多的容量。通常,有两种方式来处理这种困境。第一种方法是增加具有更多本地存储的额外的服务器。第二种方法是增加集群服务器的容量。这两种方法都需要购买和配置硬件,这将导致停机时间,可能还需要重新设计架构。然而,无论使用哪种方法都要比向SAN增加容量要便宜,可以说,这是一个显著的成本优势。
然而,当涉及到Hadoop时,还有其他存储选择。例如,一些领先的存储厂商都在建立专门针对Hadoop和大数据分析的存储设备。这些供应商包括EMC,目前提供Hadoop解决方案,例如GreenplumHDDataComputingAppliance。甲骨文正在考虑进一步深化Exadata系列设备,提供计算能力以及高速存储。
最后一个存储选择是云形式的存储,Cloudera、微软、Amazon和很多其他供应商都在提供基于云的大数据解决方案,这些解决方案能够提供处理能力、存储和支持。
在选择大数据存储解决方案时需要考虑究竟需要多少空间,分析频率如何以及需要处理什么类型的数据。这些因素,以及安全、预算和处理时间都是选择大数据存储解决方案时需要考虑的因素。
可能站在保险的角度来看,一个试点项目可能是一个不错的开始,商品硬件也是大数据试点项目的低成本投资选择。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10