
R语言:排序问题
数据排序
1、sort(),rank(),order()函数
Sort
排序(默认升序,decreasing=T时为降序)
Order
排序(默认升序,decreasing=T时为降序)
在R中,和排序相关的函数主要有三个:sort(),rank(),order()。
sort(x)是对向量x进行排序,返回值排序后的数值向量。rank()是求秩的函数,它的返回值是这个向量中对应元素的“排名”。而order()的返回值是对应“排名”的元素所在向量中的位置。
下面以一小段R代码来举例说明:
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
x<-c(97,93,85,74,32,100,99,67)
sort(x)
[1] 32 67 74 85 93 97 99 100
order(x) #order()的返回值是各个排名的学生成绩所在向量中的位置
[1] 5 8 4 3 2 1 7 6
rank(x) #rank()的返回值是这组学生所对应的排名
[1] 6 5 4 3 1 8 7 2
深入理解一下:
sort()在单变量排序中,效果较好;
order()≈原序号(sort()) 因为可以标记排序好之后的下标,在数据框中的排序操作,实用性超强,可以实现:
1、整个数据集按照某个变量(比如:按月份大小)排序;
2、整个数据集其中某个变量依据第二个变量(比如:月份)排序。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
iris;iris[1:10,]
names(iris)
#单数据列,两者相同
sort(iris$Sepal.Length)
iris$Sepal.Length[order(iris$Sepal.Length)]
#多数据列,order有奇效
iris[order(iris$setosa),] #按照setosa的大小,重排整个数据集
iris$Sepal.Length[order(iris$setosa)] #按照照setosa的大小,重排Sepal.Length数据列
iris[order(iris$setosa),]$Sepal.Length #与上句异曲同工
与which有一些地方的相似,which可以实现返回服从条件观测的行数。which又与subset子集筛选有关。(详见which、subset子集筛选用法)
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
data$V1[which(data$V2<0)] #筛选出V1中,V2小于0的数字,跟order的作用些许相似
#order用法
iris$Sepal.Length[order(iris$setosa)] #按照照setosa的大小,重排Sepal.Length数据列
2、dplyr包的一些应用
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#dplyr中基本函数 arrange——数据排序
Hdma_dat[order(Hdma_dat$survived),] #传统方法用order排序
arrange(Hdma_dat,survived) #将survived从小到大排序
arrange(Hdma_dat,desc(survived) #将survived从大到小排序
arrange(Hdma_dat,pclass,desc(survived) #先将pclass从小到大排序,再在那个数据基础上让survived从大到小排序
使用场景(我经常搞错...):
譬如我想知道一组数:b = c(0.9984616870 ,1.0177739597 ,0.0004250664 ,0.0015771710, 1.0177739597)
场景一:最大值的位置信息,我想拿到的数据是每个数值对应的大小次序,升序,理应(3 4.5 1 2 4.5)
那么:
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
rank(b)
order(b)
如果降序,就不一样了:
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
> order(c(0.9984616870 ,1.0177739597 ,0.0004250664 ,0.0015771710, 1.0177739597) ,decreasing = T)
[1] 2 5 1 4 3
order=rank+sort功能=次序信息(rank)+次序排序(sort)
接下来的两个用法是我很容易搞错的:
我想拿到 降序 + 不排序的次序信息,rank不适合;
降序 + 排序的次序信息,order适合
若:
(1)按照某行顺序从大到小重排另一行:
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
data$x1[order(data$x2)]
(2)按照某行最大值对位的另一行:
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
data$x1[order(data$x2)[1] ]
第二种办法:
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
data$x1[rank(data$x2) == max值]
注意区别。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10