R语言:排序问题
数据排序
1、sort(),rank(),order()函数
Sort
排序(默认升序,decreasing=T时为降序)
Order
排序(默认升序,decreasing=T时为降序)
在R中,和排序相关的函数主要有三个:sort(),rank(),order()。
sort(x)是对向量x进行排序,返回值排序后的数值向量。rank()是求秩的函数,它的返回值是这个向量中对应元素的“排名”。而order()的返回值是对应“排名”的元素所在向量中的位置。
下面以一小段R代码来举例说明:
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
x<-c(97,93,85,74,32,100,99,67)
sort(x)
[1] 32 67 74 85 93 97 99 100
order(x) #order()的返回值是各个排名的学生成绩所在向量中的位置
[1] 5 8 4 3 2 1 7 6
rank(x) #rank()的返回值是这组学生所对应的排名
[1] 6 5 4 3 1 8 7 2
深入理解一下:
sort()在单变量排序中,效果较好;
order()≈原序号(sort()) 因为可以标记排序好之后的下标,在数据框中的排序操作,实用性超强,可以实现:
1、整个数据集按照某个变量(比如:按月份大小)排序;
2、整个数据集其中某个变量依据第二个变量(比如:月份)排序。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
iris;iris[1:10,]
names(iris)
#单数据列,两者相同
sort(iris$Sepal.Length)
iris$Sepal.Length[order(iris$Sepal.Length)]
#多数据列,order有奇效
iris[order(iris$setosa),] #按照setosa的大小,重排整个数据集
iris$Sepal.Length[order(iris$setosa)] #按照照setosa的大小,重排Sepal.Length数据列
iris[order(iris$setosa),]$Sepal.Length #与上句异曲同工
与which有一些地方的相似,which可以实现返回服从条件观测的行数。which又与subset子集筛选有关。(详见which、subset子集筛选用法)
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
data$V1[which(data$V2<0)] #筛选出V1中,V2小于0的数字,跟order的作用些许相似
#order用法
iris$Sepal.Length[order(iris$setosa)] #按照照setosa的大小,重排Sepal.Length数据列
2、dplyr包的一些应用
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#dplyr中基本函数 arrange——数据排序
Hdma_dat[order(Hdma_dat$survived),] #传统方法用order排序
arrange(Hdma_dat,survived) #将survived从小到大排序
arrange(Hdma_dat,desc(survived) #将survived从大到小排序
arrange(Hdma_dat,pclass,desc(survived) #先将pclass从小到大排序,再在那个数据基础上让survived从大到小排序
使用场景(我经常搞错...):
譬如我想知道一组数:b = c(0.9984616870 ,1.0177739597 ,0.0004250664 ,0.0015771710, 1.0177739597)
场景一:最大值的位置信息,我想拿到的数据是每个数值对应的大小次序,升序,理应(3 4.5 1 2 4.5)
那么:
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
rank(b)
order(b)
如果降序,就不一样了:
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
> order(c(0.9984616870 ,1.0177739597 ,0.0004250664 ,0.0015771710, 1.0177739597) ,decreasing = T)
[1] 2 5 1 4 3
order=rank+sort功能=次序信息(rank)+次序排序(sort)
接下来的两个用法是我很容易搞错的:
我想拿到 降序 + 不排序的次序信息,rank不适合;
降序 + 排序的次序信息,order适合
若:
(1)按照某行顺序从大到小重排另一行:
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
data$x1[order(data$x2)]
(2)按照某行最大值对位的另一行:
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
data$x1[order(data$x2)[1] ]
第二种办法:
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
data$x1[rank(data$x2) == max值]
注意区别。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29随着技术的飞速发展与行业的持续变革,不少人心中都存有疑问:到了 2025 年,数据分析师还有前途吗?给你分享一篇阿里P8大佬最近 ...
2024-12-29