R语言:构造新序列
1、数值构造函数rep与seq
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#数值构造rep与seq
rep(1:4,each=2)#依次重复1:4两遍
rep(1:4,2) #注意,重复1:4两遍
seq(from=3,to=5,by=0.2)
rep(seq(from=3,to=5,by=0.2),2) #混合使用
rep在使用过程中也很灵活,each代表AABB;默认的为ABAB。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
> rep(c("id","use"),list(2,3))
[1] "id" "id" "use" "use" "use"
> rep(c("id","use"),each=2)
[1] "id" "id" "use" "use"
> rep(c("id","use"),2)
[1] "id" "use" "id" "use"
> rep(c("id","use"),unlist(2,3))
[1] "id" "use" "id" "use"
rep与list相结合
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
> rep(c("id","use"),list(2,3))
[1] "id" "id" "use" "use" "use"
可以实现AABBB,与each相似。在构造一些序列时候十分好用。
2、矩阵构造
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#构造矩阵
matrix(1:15,nrow=3,ncol=5,byrow=T) #byrow按行的顺序(横向)赋值;bycol按列(竖)赋值
array(1:15,dim=c(3,5)) #只能按列(竖)赋值
3、字符构造paste
seq代表是ck与数值1 之间用啥记号,如:ck_1,ck*2
collapse代表是ck1与ck2之间用啥记号如:ck1_ck2 ck1 * ck2
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#字符构造paste
paste("CK", 1:6, sep="")
paste("CK", 1:6, sep="*") #对比
paste("CK", 1:6,collapse ="")
paste("CK", 1:6,collapse = "_") #对比
#seq代表是ck与数值1 之间用啥记号,如:ck_1,ck*2
#collapse代表是ck1与ck2之间用啥记号如:ck1_ck2 ck1 * ck2
4、paste与list合用——批量处理
list能够很好与paste函数应用起来
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#paste与list合用
x <- list(a="aaa", b="bbb", c="ccc")
y <- list(d=1, e=2)
z=paste(x, y, sep="-")
paste("T", z, sep=":")
#list能够很好与paste函数应用起来
两者在批量处理之中的运用,可见博客:R语言︱list用法、批量读取、写出数据时的用法
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#3、利用List批量读出操作
#难点:如果构造输出表格的名称——paste来构造名称
flie=list()
xlsxflie=paste(1:2,".xlsx",sep="")
for(i in 1:2){
flie[[i]]=paste("C:/Users/long/Desktop/",xlsxflie[i],sep="")
write.xlsx(data.list2[[i]],file)
}
其中,代码可以实现,数据写出时候,批量按照一定格式进行命名。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20